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a b s t r a c t

The aim of this work is to present a new and efficient optimization method for the solution
of blind deconvolution problems with data corrupted by Gaussian noise, which can be refor-
mulated as a constrained minimization problem whose unknowns are the point spread
function (PSF) of the acquisition system and the true image. The objective function we con-
sider is the weighted sum of the least-squares fit-to-data discrepancy and possible regular-
ization terms accounting for specific features to be preserved in both the image and the PSF.
The solution of the corresponding minimization problem is addressed by means of a prox-
imal alternating linearized minimization (PALM) algorithm, in which the updating proce-
dure is made up of one step of a gradient projection method along the arc and the choice
of the parameter identifying the steplength in the descent direction is performed auto-
matically by exploiting the optimality conditions of the problem. The resulting approach
is a particular case of a general scheme whose convergence to stationary points of the con-
strained minimization problem has been recently proved. The effectiveness of the iterative
method is validated in several numerical simulations in image reconstruction problems.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Image deconvolution is an extremely prolific field which on one hand finds applications in a large variety of areas
(physics, medicine, engineering,...) and on the other hand rounds up the efforts of a large community of mathematicians
working on inverse problems and optimization methods. Most of the resulting works deal with the ill-conditioned discrete
problem in which the blurring matrix is assumed to be known and the goal is to find a good approximation of the unknown
image by means of some regularization approaches [1]. However, in many real applications the blurring matrix is not com-
pletely known due to a lack of information on the acquisition model and/or to external agents which corrupt the measured
image (atmospheric turbulence, thermal blooming,...). This situation is known as blind deconvolution and most strategies to
approach this problem are based on a simultaneous recovery of both the image approximation and the point spread function
(PSF) of the acquisition system. Blind deconvolution is a very actual field and a much more challenging problem than the
image deconvolution one, due to the strongly ill-posedness caused by the non-uniqueness of the solution. A review of some
recent results can be found e.g. in two recent papers by Almeida & Figuereido and Oliveira et al. [2,3], even if many other
different approaches have been developed. If the noise corrupting the measured data is assumed to have a Gaussian nature,
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blind deconvolution can be addressed by means of the constrained minimization of the squared Euclidean norm of the
residuals plus some regularization terms suitably chosen according to the object and PSF to be reconstructed. An alternative
formulation involves the unconstrained minimization of the same objective function with the addition of the indicator
functions of the feasible sets, which can be numerically solved with forward–backward splitting methods [4,5].

The starting point of this paper is a proximal alternating method recently proposed by Bolte et al. [6] for a more general
class of nonconvex and nonsmooth minimization problems, in which the parameters defining the method are fixed by using
the Lipschitz constants of the partial gradients of the least-squares plus regularization part of the objective function.
Convergence of the resulting sequence to a stationary point is ensured by the Kurdyka–Łojasiewicz property [7–9]. In
particular, for the specific case of blind deconvolution, we extend the convergence results proved in [6] to a wider range
of parameters, which allows the corresponding scheme to converge much faster toward the limit point. Moreover, we intro-
duce a practical adaptive choice of the parameters based on a measure of the optimality condition violation, and we test the
proposed algorithm in some simulated numerical experiments.

The paper is organized as follows: in Section 2 we introduce the blind deconvolution from Gaussian data and we recall the
specific formulation of the proximal alternating linearized minimization proposed in [6] for this problem. Our proposed
extension of the scheme is described in Section 3, together with the analogous convergence results and some hints for
the choice of the parameters. Section 4 is devoted to some numerical experiments on synthetic datasets, while our conclu-
sions are given in Section 5.

2. Problem setting

When dealing with Gaussian noise, blind deconvolution can be modeled as the minimization problem

min
x2X;h2H

Fðx;hÞ ¼ 1
2
kh � x� gk2 þ k1R1ðxÞ þ k2R2ðhÞ; ð1Þ

where X # Rn and H # Rm are the nonempty, closed and convex feasible sets of the unknown image x and PSF h, respectively,
� denotes the convolution operator, g is the measured image, R1; R2 are differentiable regularization terms and k1; k2 are
positive regularization parameters. As usual, the computation of the convolution product is performed by means of a
matrix–vector multiplication h � x ¼ Hx ¼ Xh, where X and H are suitable structured matrices depending on the choice of
the boundary conditions [10]. Examples of regularization terms frequently used in the applications are the following:

� RT0ðzÞ ¼ kzk2 (Tikhonov regularization of order 0);

� RT1ðzÞ ¼ krzk2 (Tikhonov regularization of order 1);

� RHSðzÞ ¼
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k rzð Þik

2 þ b2
q

(hypersurface regularization), where rzð Þi is the 2-vector representing the discretization of

the gradient of z at pixel i in the horizontal and vertical directions.

As concerns the feasible sets, we consider non-negative images and non-negative and normalized PSFs, therefore we assume

X ¼ fx 2 Rnjx P 0g;

H ¼ h 2 Rmjh P 0;
X

i

hi ¼ 1

( )
:

If we denote with IX and IH the indicator functions of X and H, respectively, then problem (1) can be rewritten as

min
x2Rn ;h2Rm

Wðx;hÞ ¼ Fðx;hÞ þ IXðxÞ þ IHðhÞ: ð2Þ

Problem (2) can be addressed by means of recently proposed optimization methods, provided that the function F and its
gradient satisfy some properties that we recall in the following definition.

Definition 1. We define the set F of functions F : Rn � Rm�!R such that:

(i) inf
x2Rn ;h2Rm

Fðx;hÞ > �1;

(ii) for any x 2 Rn and h 2 Rm, the partial gradientsrxFð�;hÞ andrhFðx; �Þ are globally Lipschitz continuous, i.e., there exist
LxðhÞ; LhðxÞ > 0 such that

krxFðx1;hÞ � rxFðx2;hÞk 6 LxðhÞkx1 � x2k 8x1; x2 2 Rn;

krhFðx;h1Þ � rhFðx;h2Þk 6 LhðxÞkh1 � h2k 8h1; h2 2 Rm:

Moreover, for each bounded subset B1 � B2 of Rn � Rm, there exist aðB1Þ; aðB2Þ > 0 such that

supfLhðxÞ : x 2 B1g 6 aðB1Þ;
supfLxðhÞ : h 2 B2g 6 aðB2Þ;
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