
An efficient algorithm for solving nonlinear Volterra–Fredholm
integral equations

Zhong Chen ⇑, Wei Jiang
Department of Mathematics, Harbin Institute of Technology at Weihai, Shandong 264209, PR China

a r t i c l e i n f o

Keywords:
e-Approximate solution
Volterra-Fredholm
Nonlinear integral equation

a b s t r a c t

In this work, we develop a new effective method for solving nonlinear Volterra–Fredholm
integral equation. The existence of any e-approximate solution is proved. At the same time,
an effective method for obtaining the e-approximate solution is established. The final
numerical examples illustrate that our approach is valid not only for weakly nonlinear
problems but also for strongly nonlinear problems.
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1. Introduction

The nonlinear Volterra–Fredholm integral equations arise from various physical and biological models. The essential fea-
tures of these models are of wide applicable [1]. In this work, we consider the nonlinear Volterra–Fredholm integral equation
given by

LuðxÞ ¼ uðxÞ þ k1

Z x

a
K1ðx; tÞN1ðuðtÞÞdt þ k2

Z b

a
K2ðx; tÞN2ðuðtÞÞdt ¼ f ðxÞ; ð1Þ

where k1; k2 are real constants, N1;N2 are nonlinear functions, K1;K2;u are all continuous functions and u is the unknown
function.

In the last decade, nonlinear Volterra–Fredholm integral equations receives widespread attentions. And many methods
have been proposed for solving them such as modified decomposition method [2,3], reproducing kernel Hilbert space
method [4], Legendre wavelets method [5], homotopy perturbation method [6], a composite collocation method [7],
rationalized Haar functions method [8], variational iteration method [9], collocation method based on radial basis functions
[10], method based on Bernstein operational matrices [11], hybrid of block-pulse functions and Taylor series method [12],
sinc method [13] etc. The comprehensive view of nonlinear Volterra–Fredholm integral equations can be found in Ref. [14].

In this work, we propose a new method based on spline function and e-approximate solution. This method is simple,
effective and easy to implement. It’s worth noting that numerical experiments show that this method is still valid for
strongly nonlinear problems.

The rest of the paper is organized as follows. Section 2 give the main results. In Section 3, the numerical results confirm
that the algorithm is accurate, efficient and readily implemented. Section 4 ends this paper with a brief conclusion.

2. The e-approximate solution of Eq. (1)

Definition 2.1. Let e > 0. v is called an e-approximate solution of (1) if kLv � fkC 6 e.
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In this work, we divide interval ½a; b� into 3n subintervals ½xi�1; xi�, where xi ¼ aþ ðb�aÞi
3n ; i ¼ 0;1;2; . . . ;3n. Suppose that uðxÞ

is sufficiently smooth and define its interpolation function S1ðxÞ as follows

S1ðxÞ ¼

S11ðxÞ; x 2 ½x0; x3�
S12ðxÞ; x 2 ½x3; x6�
..
.

S1kðxÞ; x 2 ½x3k�3; x3k�
..
.

S1nðxÞ; x 2 ½x3n�3; x3n�

;

8>>>>>>>>>><
>>>>>>>>>>:

where

S1kðxÞ ¼
X3

j¼0

lkjðxÞuðxkjÞ:

and lkjðxÞ ¼
Q3k

i¼3k�3
i–3ðk�1Þþj

x�xi
xj�xi

; xkj ¼ x3k�3þj and lkj are called Lagrange interpolation basis functions.

Lemma 2.1. Assume that uðxÞ 2 C4½a; b� and S1ðxÞ is the equidistant Lagrange interpolation function of uðxÞ, h ¼ b�a
3n , then

max
a6x6b

juðxÞ � S1ðxÞj 6
1

24
max
a6x6b

juð4ÞðxÞjh4
: ð2Þ

Proof. When x 2 ½x3k�3; x3k�, using the error estimation of the equidistant Lagrange interpolation function, we have

juðxÞ � S1ðxÞj ¼
tðt � 1Þðt � 2Þðt � 3Þ

4!
h4uð4ÞðnÞ

����
����;

where n 2 ðx3k�3; x3kÞ � ½a; b� and 0 6 t 6 3. Inequality

jtðt � 1Þðt � 2Þðt � 3Þj 6 1; 0 6 t 6 3;

gives

juðxÞ � S1ðxÞj 6
1

24
max
a6x6b

juð4ÞðxÞjh4
:

So, the conclusion follows. h

Put M ¼maxf
R b

a jK1ðx; tÞjdt;
R b

a jK2ðx; tÞjdtg.

Lemma 2.2. Let uðxÞ be the exact solution of Eq. (1), S1ðxÞ; S2ðxÞ; S3ðxÞ are the equidistant Lagrange interpolation functions of
uðxÞ;N1ðuðxÞÞ;N2ðuðxÞÞ , respectively. That is,

SiðxÞ ¼

Si1ðxÞ; x 2 ½x0; x3�
Si2ðxÞ; x 2 ½x3; x6�

..

.

SikðxÞ; x 2 ½x3k�3; x3k�
..
.

SinðxÞ; x 2 ½x3n�3; x3n�

8>>>>>>>>>><
>>>>>>>>>>:

; i ¼ 1;2;3;

and

S1kðxÞ ¼
X3

j¼0

lkjðxÞuðxkjÞ;

S2kðxÞ ¼
X3

j¼0

lkjðxÞN1ðuðxkjÞÞ;

S3kðxÞ ¼
X3

j¼0

lkjðxÞN2ðuðxkjÞÞ;

Z. Chen, W. Jiang / Applied Mathematics and Computation 259 (2015) 614–619 615



Download English Version:

https://daneshyari.com/en/article/4626853

Download Persian Version:

https://daneshyari.com/article/4626853

Daneshyari.com

https://daneshyari.com/en/article/4626853
https://daneshyari.com/article/4626853
https://daneshyari.com

