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1. Introduction

We begin with the following sequence of symbolic transformations with the shift operator, related to summability of
divergent series.
Shift operator. An arbitrary series

A=aq+a+a+as+--- (1)
can be rewritten as
A=ag+7Tao +T?q +T2a + =1 +T+ 2+ 7T +---)do, )

where 7 is the shift operator, an operator of yet indefinite mathematical nature, but acting so that ta, = a,.;, — and then as

- L 3)

summing up 1+ 7 + 72 + 13 + - - according to the informal equality

1
141+ 40+ = ——. (4)
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Hutton transform. Now, let d # — 1 and o[d] = d + 7. Formally,
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and we get the Hutton transform (H,d) (Hardy [1] for d = 1) of the original series,

I dag+a; day+a, da;+as
_1+dJr 1+d * 1+d + 1+d (6)

Iterated Hutton, or Euler-Jakimovski transform. Let {d,},., be an infinite sequence of real numbers d, # — 1. Applying
transformations (H,d,), (H,d>), (H,ds),... — as in (5) and (6) - consecutively, so that the first term of every intermediate

series is separated after each iteration, we obtain the series of separated (frameboxed) terms as the final result:

A

1 1 ditt 1) _

-t + <1+d, 1—7:) -
_ 1 ditt (1 b+t 1.\
— 1+d, + 1+d; (Hdz + 1+dy 1-1) —

= |14 di+t + di+)(datt) 1) _
1+d, (1+d1)(1+d3) 1+dy)(1+dy) 1-

T
1 di+t (di+7)(d+7) |
= ‘1+d1 + ey T mra g a-d)| (7)

+ <<d1+r><d2+1><d3+r> 1 ) _

(T+dq)(1+dy)(1+d3) 1-7

(d1+7)(dy+7)...(dk+7)
(T+dy)(1+dy)...(1+dy ) (1+dy, ) *

Il
Mz

=~
Il

0

Remark 1. The final series is a formal Newton’s interpolation of the function 1%1 with the nodes —d;, —d;, —ds,....
We conclude that, in the spirit of (3),

1 & 40+ 1) (d 1)
A=q—g @ = Z(1 Td)A 1 dy) (1 +do( +dey) @ (8)
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where each polynomial Py(t) = (di +7)(d2 +7)...(dx + ) formally acts on ao in accordance with the basic equalities
™ ag = a,.

Remark 2. Transformation (7) and (8) was explicitly introduced by Jakimovski [2] (as [F,d,]) based on a series of earlier
studies. Yet most notably, the whole idea of iterated transformation with separation of first terms of intermediate series
belongs to Leonhard Euler, Institutiones Calculi Differentialis, Part II, Section 10 - see a discussion in Hardy [1, Section 2.6].
This is why we call it the Euler-Jakimovski transformation here. The summability method based on the Euler-Jakimovski
transformation works, pending appropriate choice of d,, for rapidly divergent oscillating series like 0! — 1! 4 2! — 3! 4 ..., See
[3] for further references. 0O

2. Regression: some linear transformations

The transformations considered above can be represented by the following infinite matrices:

1 0 0 0 .. d 1 0 0
. d 1 0 0 .. 0 d 1 0 ..

H(d):m 0 d 1 0 ...|, Sdy=|(0 0o d 1 .|,

0 0 d 1 0 0 0 d

& 0 0 0 0

g_; z 0 0 0
E{da}ny) = | 9% 4t % 0 0 ,
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where Dy = (1 +d;)(1+d3)...(1+dk:1) - so that

[E] _ 1 S(dl) . S(dZ) . . S(dk)
k 1+dk+] 1+d1 1+d2 l+dk 0’

where [M],, k=0,1,2,..., is the kth row of any matrix M.

k:0’1727"'7 (9)
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