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a b s t r a c t

In this paper, we investigate a method to hedge nonconvex stochastic programming with
CVaR constraints and apply the sample average approximation (SAA) method based on
bundle method to solve it. Under some moderate conditions, the SAA solution converges
to its true counterpart with probability approaching one. This technique is suitable for using
by investment companies, brokerage firms, mutual funds, and any business that evaluates
risks. It can be combined with analytical or scenario-based methods to optimize portfolios
in which case the calculations often come down to non-convex programming. Finally, we
illustrate our method by considering several portfolios in the Chinese stocks market.

� 2015 Published by Elsevier Inc.

1. Introduction

The selection of assets or equities is not just a problem of finding attractive investments. Designing the correct portfolio of
assets cannot be done by human intuition alone and requires modern, powerful and reliable mathematical programs called
optimizers. It is a generally accepted principle portfolio of that a portfolio is designed according to the investor’s risk
tolerance, time frame and investment objectives. The monetary value of each asset may influence the risk/reward ratio of
the portfolio and is referred to as the asset allocation of the portfolio. When determining a proper asset allocation one aims
at maximizing the expected return and minimizing the risk.

In Chinese, most people are Risk Averse (A description of an investor who, when faced with two investments with a similar
expected return (but different risks), will prefer the one with the lower risk). Therefore how to control the risk of portfolio
seems to be very important. There are many ways to measure risk, among these VaR ([1,7,18,21], etc.) and CVaR
([2,8,10,13,16,19], etc.) have been proved to be effective.

VaR is a very popular measure of risk, but it has undesirable mathematical characteristics such as a lack of subadditivity
and convexity, see Artzner [4,5]. As an alternative measure of risk, CVaR is known to have better properties than VaR, see
[4,11]. Pflug [17] proves that CVaR is a coherent risk measure having the following properties: transition equivariant,
positively homogeneous and convex.

Stochastic programming models that consider the variability of the uncertain parameters typically optimize the expected
performance measures of the problem so as to obtain optimal solution that perform well on average of the uncertain events.
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In risk management, stochastic convex optimization (with CVaR objective or CVaR constraints) is a powerful tool for port-
folio, for instance, the revenue maximization model

min � rðxÞT x

s:t: eT x ¼ 1;
gðxÞ � q 6 0;
CvaRa½Gðx; rÞ� � p 6 0;
xi P 0; i ¼ 1; . . . ; n;
x 2 Rn;

ð1:1Þ

where n denotes type of shares we considered, r is a random variable which represent stock returns(per month), r 2 Rn, the
function gðxÞ represents portfolio risk of n-assets, x ¼ ðx1; . . . ; xnÞ represents the amount of money invested in the different
assets at the beginning of the examined period, e is a unit vector, e 2 Rn; Gðx; rÞ ¼ �rT x; rT x represents the investment
income, �rT x represents the investment losses.

However, in fact when come to CVaR constraints problem whose objective function is often non-convex like minimum risk
model

min f ðxÞ
s:t: eT x ¼ 1;

gðxÞ � q 6 0;
CvaRa½Gðx; rÞ� � p 6 0;
xi P 0; i ¼ 1; . . . ;n;

x 2 Rn;

ð1:2Þ

where f ðxÞ ¼ xTrx; where r ¼ ½ri;j�n�n; ri;j ¼ E½ðri � EriÞðrj � ErjÞ�; i; j ¼ 1; . . . ; n. We know that r may not be positive-
definite so (1.2) could be a non-convex programming.

In the past few years, Krokhmal et al. [15] and Rockafellar and Uryasev [19,20] introduce the idea of using CVaR in dynam-
ic models. Krokhmal et al. [15] is also the first paper dealing with CVaR constraints. Fábián [12] proposes decomposition
frameworks for handling CVaR objectives and constraint in two-stage stochastic model. Ágoston [3] uses SRA algorithm
for solving CVaR minimization problems. Bardou [6] solves CVaR hedging using quantization based stochastic approximation
algorithm.

These methods are very useful in stochastic convex optimizations with CVaR objectives and constraints but may not be
extend to solve the non-convex problems.In this paper we consider the stochastic model (CVaR constraints) which contains
(1.2) as special case

min
x2X
fE½f ðx; nÞ� : CvaRa½Gðx;xÞ� 6 qg; ð1:3Þ

where we use random variable n and w to reflect randomness of investment market, f ðx; nÞ : Rn �X! R is a random func-
tion and for every n; f may be non-convex. Our works focus on using SAA method which has been widely used in many
papers such as [9] and [22] based on bundle method to solve stochastic model (CVaR constraints) (1.3). Bundle methods
are recognized as one of the most efficient optimization methods for solving nonsmooth problems. Under some moderate
conditions, we show that the deviation of the solution set of SAA problem from the solution set of true problem converges
to zero. We also give the numerical results for illustrating the effectiveness of our method.

The rest of the paper is organized as follows. In the next section, we introduce some basic definitions and results to be
used in this paper. Convergence analyses of the SAA method are given for constraint set, general non-convex stochastic opti-
mization and non-convex stochastic program with CVaR constraints in Section 3. Numerical experiments and applications in
risk management are showed at Section 4. We present our conclusion in Section 5.

2. Preliminaries

In this section, we recall some background materials and preliminary results to be used in this paper.
Let hðx; nÞ be the loss associated with the decision vector x to be chosen from a certain subset X of Rn and the random

vector n 2 Rm. For each x, the loss hðx; nÞ is a random variable having a distribution in R induced by that of n and pðnÞ denote
the density function of n. The probability of hðx; nÞ not exceeding a threshold c is given by

Wðx; cÞ ¼
Z

hðx;nÞ
pðnÞdn: ð2:1Þ

As a function of c for fixed x; Wðx; nÞ is the cumulative distribution function for the loss associated with x. The a-VaR and
a-CVaR values for the loss random variable associated with x and any specified probability level a in ð0;1Þ will be denoted
by
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