Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Bicyclic oriented graphs with skew-rank 2 or 4

Hui Qu^a, Guihai Yu^{a,b,*}

^a Department of Mathematics, Shandong Institute of Business and Technology, Yantai, Shandong 264005, China ^b Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, China

ARTICLE INFO

Keywords: Oriented graph Skew-adjacency matrix Skew-rank Rank Bicyclic graph

ABSTRACT

The skew-rank of oriented graph G^{σ} , denoted by $sr(G^{\sigma})$, is the rank of the skew-adjacency matrix of G^{σ} . The skew-rank is even since the skew-adjacency matrix is skew-symmetric. In this paper we characterize the bicyclic oriented graphs with skew-rank 2 or 4. © 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let *G* be a simple graph of order *n* with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ and edge set E(G). The *adjacency matrix* A(G) of a graph *G* of order *n* is the $n \times n$ symmetric 0–1 matrix $(a_{ij})_{n \times n}$ such that $a_{ij} = 1$ if v_i and v_j are adjacent and 0, otherwise. We denote by Sp(G) the spectrum of A(G). The rank of A(G) is called to be the rank of *G*, denoted by r(G). Let G^{σ} be a graph with an orientation which assigns to each edge of *G* a direction so that G^{σ} becomes an oriented graph. The graph *G* is called the *underlying graph* of G^{σ} . The *skew-adjacency matrix* associated to the oriented graph G^{σ} is defined as the $n \times n$ matrix $S(G^{\sigma}) = (s_{ij})$ such that $s_{ij} = 1$ if there has an arc from v_i to v_j , $s_{ij} = -1$ if there has an arc from v_j to v_i and $s_{ij} = 0$ otherwise. Obviously, the skew-adjacency matrix $S(G^{\sigma})$. The *skew-rank* of an oriented graph G^{σ} , denoted by $sr(G^{\sigma})$, is defined as the rank of the skew-adjacency matrix $S(G^{\sigma})$. The *skew-spectrum* $Sp(G^{\sigma})$ of G^{σ} is defined as the spectrum of $S(G^{\sigma})$. Note that $Sp(G^{\sigma})$ consists of only purely imaginary eigenvalues and the skew-rank of an oriented graph is even.

Let $C_k^{\sigma} = u_1, u_2, \ldots, u_k u_1$ be an even oriented cycle. The *sign* of the even cycle C_k^{σ} , denoted by $sgn(C_k^{\sigma})$, is defined as the sign of $\prod_{i=1}^k s_{u_i u_{i+1}}$ with $u_{k+1} = u_1$. An even oriented cycle C_k^{σ} is called *evenly-oriented* (*oddly-oriented*) if its sign is positive (negative). If every even cycle in G^{σ} is evenly-oriented, then G^{σ} is called *evenly-oriented*. An *induced subgraph* of G^{σ} is an induced subgraph of G and each edge preserves the original orientation in G^{σ} . For an induced subgraph H^{σ} of G^{σ} , let $G^{\sigma} - H^{\sigma}$ be the subgraph obtained from G_w by deleting all vertices of H_w and all incident edges. For $V' \subseteq V(G^{\sigma})$, $G^{\sigma} - V'$ is the subgraph obtained from G^{σ} by deleting all vertices in V' and all incident edges. A vertex of a graph G^{σ} is called *pendant* if it is only adjacent to one vertex, and is called *quasi-pendant* if it is adjacent to a pendant vertex. Denote by P_n , S_n , C_n , K_n a path, a star, a cycle and a complete graph all of which are simple unoriented graphs of order *n*, respectively. A graph is called *trivial* if it has one vertex and no edges. Let G be a bicyclic graph. The *base* of G, denoted by \hat{G} , is the unique bicyclic subgraph of G containing no pendant vertices. Thus G can be obtained from \hat{G} by attaching trees to some vertices of \hat{G} . It is well known that (see, for example [14]) there are two types of bases of bicyclic graphs, as described next.

^{*} Corresponding author at: Department of Mathematics, Shandong Institute of Business and Technology, Yantai, Shandong 264005, China. *E-mail addresses:* quhui781111@126.com (H. Qu), yuguihai@126.com (G. Yu).

Let P_{p+2} , P_{l+2} , P_{q+2} be three paths with min $\{p, l, q\} \ge 0$ and at most one of p, l, q is 0. Denoted by $\theta(p, l, q)$ (as depicted in Fig. 1) the graph obtained from P_{p+2} , P_{l+2} , P_{q+2} by identifying the three initial vertices and terminal vertices. The bicyclic graph containing $\theta(p, l, q)$ as its base is called a θ -graph.

Recently the study of the skew-adjacency matrix of oriented graphs attracted some attentions. Cavers et al. [4] provided a paper about the skew-adjacency matrices in which authors considered the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matching polynomial of a graph and the characteristic polynomial of its adjacency and skew-adjacency matrices; skew-spectral radii and an analogue of the Perron-Frobenius theorem; and the number of skew-adjacency matrices of a graph with distinct spectra. Anuradha and Balakrihnan [2] investigated skew spectrum of the Cartesian product of an oriented graph with an oriented Hypercube. Anuradha et al. [3] considered the skew spectrum of special bipartite graphs and solved a conjecture of Cui and Hou [8]. Hou et al. [12] gave an expression of the coefficients of the characteristic polynomial of the skew-adjacency matrix $S(G^{\sigma})$. As its applications, they present new combinatorial proofs of some known results. Moreover, some families of oriented bipartite graphs with $Sp(S(G^{\sigma})) = iSp(G)$ $(i = \sqrt{-1})$ were given. Gong et al. [9] investigated the coefficients of weighted oriented graphs. In addition they established recurrences for the characteristic polynomial and deduced a formula for the matching polynomial of an arbitrary weighted oriented graph. Xu [27] established a relation between the spectral radius and the skew-spectral radius. Also some results on the skew-spectral radius of an oriented graph and its oriented subgraphs were derived. As applications, a sharp upper bound of the skew-spectral radius of oriented unicyclic graphs was present. Some authors investigated the skew-energy of oriented graphs, one can refer to [1,7,13,10,19,24,28]. Actually, various of graph energies are studied, such as graph energy [11,16– 18,20,21,25], matching energy [5,6,15,26]. In this paper we characterize the bicyclic oriented graphs with skew-rank 2 or 4.

2. Preliminaries

The following lemma can be derived from fundamental matrix theory.

Lemma 1.

- (i) Let H^{σ} be an induced subgraph of G^{σ} . Then $sr(H^{\sigma}) \leq sr(G^{\sigma})$.
- (ii) Let $G^{\sigma} = G_1^{\sigma} \cup G_2^{\sigma} \cup \cdots \cup G_t^{\sigma}$, where $G_1^{\sigma}, G_2^{\sigma}, \ldots, G_t^{\sigma}$ are connected components of G^{σ} . Then $sr(G^{\sigma}) = \sum_{i=1}^t sr(G_i^{\sigma})$. (iii) Let G^{σ} be an oriented graph on *n* vertices. Then $sr(G^{\sigma}) = 0$ if and only if G^{σ} is a graph without edges (empty graph).

Lemma 2 [12,23]. Let C_n^{σ} be an oriented cycle of order n. Then we have

 $sr(C_n^{\sigma}) = \begin{cases} n, & C_n^{\sigma} \text{ is oddly-oriented}, \\ n-2, & C_n^{\sigma} \text{ is evenly-oriented}, \\ n-1, & \text{otherwise.} \end{cases}$

Lemma 3 [22]. Let T^{σ} be an oriented tree with matching number $\beta(T)$. Then we have

$$sr(T^{\sigma}) = r(T) = 2\beta(T).$$

The following result is immediate from Lemma 3.

Lemma 4. Let P_n^{σ} be an oriented path of order n. Then we have

$$sr(P_n^{\sigma}) = \begin{cases} n-1, & n \text{ is odd,} \\ n, & n \text{ is even.} \end{cases}$$

Fig. 1. $\infty(p, l, q)$ and $\theta(p, l, q)$.

Download English Version:

https://daneshyari.com/en/article/4626940

Download Persian Version:

https://daneshyari.com/article/4626940

Daneshyari.com