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a b s t r a c t

In this article, a rotating disk–beam system is considered. Specifically, the system consists
of a flexible beam and a rigid disk which rotates with a time-varying angular velocity. The
beam, free at one end and clamped at the other one to the center of the disk, is supposed to
rotate with the disk in another plane perpendicular to that of the disk. To stabilize the sys-
tem, we propose a feedback law which consists of a control torque applied on the disk,
while either a boundary or distributed internal control with memory is exerted on the
beam. Then, it is shown, in both cases, that the closed-loop system is stabilized under suit-
able conditions on the angular velocity and the memory terms.

� 2015 Published by Elsevier Inc.

1. Introduction

This article is intended to provide a comprehensive treatment of the exponential stabilization, under the presence of
memory terms, for the following system

qyttðx; tÞ þ EIyxxxxðx; tÞ þ EðtÞ ¼ qx2ðtÞyðx; tÞ; ðx; tÞ 2 ð0; ‘Þ � ð0;1Þ;
yð0; tÞ ¼ yxð0; tÞ ¼ yxxð‘; tÞ ¼ 0; t > 0;
EIyxxxð‘; tÞ ¼ FðtÞ; t > 0;

d
dt xðtÞ Id þ q

Z ‘

0
y2ðx; tÞdx

� �� �
¼ CðtÞ; t > 0;

yðx;0Þ ¼ y0ðxÞ; ytðx;0Þ ¼ y1ðxÞ; x 2 ð0; ‘Þ;
xð0Þ ¼ x0 2 R;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð1:1Þ

in which the physical parameters ‘; EI; q and Id are respectively the length of the beam, the flexural rigidity, the mass per
unit length of the beam, and the disk’s moment of inertia. Furthermore, yðx; tÞ is the beam’s displacement in the rotating
plane at time t with respect to the spatial variable x and x is the angular velocity of the disk. Also, EðtÞ; FðtÞ and CðtÞ denote
respectively the internal distributed memory type control, the memory type boundary control exerted on the beam and the
torque control to be applied on the disk.

The above system models the dynamics of a large-scale flexible space structure [3], namely, a flexible robot beam/arm,
clamped at one end to a rigid body (disk) and free at the other end. Moreover, it is assumed that the center of mass of
the disk is fixed in an inertial frame and rotates in that frame with a nonuniform angular velocity [3].
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The stabilization problem of the system (1.1) has attracted the attention of many researchers (see for instance
[3,4,26,20,21,17,10,7,9] and the references therein). To be more precise, the authors showed in [3] that with only a structural
damping control

EðtÞ ¼ r1yxxxxtðx; tÞ; r1 > 0;

the system has a finite number of rotating equilibrium states. Also, in the case of a much weaker viscous damping control

EðtÞ ¼ r2ytðx; tÞ; r2 > 0;

the existence of a flat linear inertial manifold has been showed for the system [4]. However, in the presence of the viscous
damping and torque control in (1.1)

EðtÞ ¼ kytðx; tÞ; k > 0;
CðtÞ ¼ �dðxðtÞ �-Þ; d > 0; - 2 R;

�
an exponential stability result has been established in [26]. The stabilization problem of variants of the system (1.1) has
been dealt with in [20,21]. Indeed, under specific conditions, the author in [20] proved that the following system

qyttðx; tÞ þ EIyxxxxðx; tÞ þ q€hðtÞðbþ xÞ � q _h2ðtÞyðx; tÞ ¼ 0; ðx; tÞ 2 ð0; ‘Þ � ð0;1Þ;
yð0; tÞ ¼ yxð0; tÞ ¼ 0; t > 0;
EIyxxð‘; tÞ ¼ �k1yxtð‘; tÞ; k1 > 0; t > 0;
EIyxxxð‘; tÞ ¼ k2ytð‘; tÞ; k1 > 0; t > 0;
Id

€hðtÞ þ EIðbyxxxð0; tÞ � yxxð0; tÞÞ ¼ CðtÞ; t > 0;

8>>>>>><
>>>>>>:

can be exponentially or asymptotically stabilized depending on the expression of the torque controls CðtÞ. Note also that if
the angular velocity x is assumed to be constant in (1.1), then a linear variant of (1.1), namely,

qyttðx; tÞ þ EIyxxxxðx; tÞ ¼ qX2yðx; tÞ; ðx; tÞ 2 ð0; ‘Þ � ð0;1Þ;
yð0; tÞ ¼ yxð0; tÞ ¼ 0; t > 0;
xðtÞ ¼ X ðconstantÞ; t > 0;

8><
>:

would be uniformly exponential stabilized if dynamic boundary force and moment controls are applied at the free end of the
beam [21]

EIyxxð‘; tÞ ¼ �k1yxtð‘; tÞ; k1 > 0; t > 0;
EIyxxxð‘; tÞ ¼ k2ytð‘; tÞ; k1 > 0; t > 0:

�
This result has been extended to the system (1.1) with one boundary control (force or moment), in addition of a control

torque of the disk [17]. Later, the mathematical finding in [17] (resp. [21]) has been improved in [8] to the case of dynamic
controls (resp. non-homogeneous beam [9]). Last but not least, we point out that even nonlinear controls have been pro-
posed in some works related to the system (1.1). In fact, it has been showed in [10] that the system can be asymptotically
stabilized by only a nonlinear feedback torque control law, whereas a class of nonlinear controls has been provided in [7] to
ensure the exponential stability of the system.

As the reader has certainly noticed, the feedback controls proposed in literature do not take into account the memory
feature which is inevitable in practical control systems (see e.g. [2,6,13,14,18,19,22–24] for other kinds of systems with var-
ious types of memory terms). Whence the stability of the system (1.1) with memory terms is worth studying for mathema-
tical as well as practical reasons.

For ease, we shall treat only the case EI ¼ q ¼ ‘ ¼ 1 thanks to a well-known scaling argument (change yðx; tÞ to

yðx‘;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘4=EIÞq

q
tÞ). The main contribution of this article is to show that under suitable conditions, the system (1.1) can be

exponentially stabilized via either the feedback control law

FðtÞ ¼ aytð1; tÞ þ b
Z t�s1

t�s2

kðt � sÞytð1; sÞds;

CðtÞ ¼ �cðxðtÞ �-Þ; - 2 R;

8><
>: ð1:2Þ

or

EðtÞ ¼ pðxÞytðx; tÞ þ qðxÞ
Z t�s1

t�s2

kðt � sÞytðx; sÞds;

CðtÞ ¼ �cðxðtÞ �-Þ; - 2 R;

8><
>: ð1:3Þ

in which a > 0; b 2 R and c > 0 are feedback gains; s1; s2 2 R such that 0 6 s1 < s2; k 2 L1ðs1; s2Þ is the memory kernel
and p; q 2 L1ð0;1Þ.

The novelty of the present work, compared to the previous ones, lies in the fact that we do take into consideration a mem-
ory term in (1.2) and (1.3). Notwithstanding, it is shown, by adopting the same strategy as in [23] for a wave equation, that
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