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method is applied. Also, the two-dimensional unsteady Burger’s equation is described by
our proposed scheme. Numerical experiments and numerical comparisons are presented
to show the efficiency and the accuracy of the proposed scheme.
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1. Introduction

Nonlinear partial differential equations (NPDEs) are commonly used to model most phenomena in science and engineer-
ing. The generalized Burger's-Huxley equation (GBHE), the generalized Burger’s-Fisher equation (GBFE) and two-dimension-
al unsteady Burger's equation are examples of these equations, which describe the interaction between reaction
mechanisms, convection effects and diffusion transports [1]. Obtaining an efficient and more accurate numerical solution
for such equations has been the subject of many studies (see [2-6,10,14,15], and references therein).

Our contribution in this paper is to develop a general compact finite difference scheme of order 2N for solving the follow-
ing nonlinear partial differential equations (NPDEs):

I- u; + uuluy, — ey = f(u), (x,t) €D x 1, (1.1)
with the initial condition

u(x,0) = G(x), xeD, (1.2)
and the boundary conditions

u(a,t) = Hy(t), tel, (1.3)

u(b,t) = Hy(t), tel, (1.4)

II- The two-dimensional unsteady Burger’'s equation [14,15]:
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U + Ul + Uty = V(U + Uyy), (X,¥) € QX1 (1.5)

with the initial condition

U(X,yvo) = GO(xvy)v (va) € Qv (16)
and the boundary conditions

u(xovyvt):H3(y7t)7 u(xMxvyvt):H4(y7t)7 Yo gygyMw telv (17)

U(X,yo,t) :H5(X7 t)7 u(XsyMy’t) :HG(th)v Xo <X<XM>M t617 (18)

where D = {x: x € [a,b]}, here a and b are constants, Q = {(x,y) (X € [Xo, X, ),V € [yo,yMy] } v =% >0, Re is the Reynolds

number, [ is a time interval [0, T] and the subscripts x, y and t denote to the spaces and time derivatives, respectively. Eq.
(1.1) is called GBHE if f(u) = pu(1 — u®)(u® — vy) and it is called GBFE if f(u) = Bu(1 — u°®), where g, 8, 6 and y are parameters
such that: § > 0,6 >0and y € (0,1). For u =0 and é = 1, the GBHE is reduced to the Huxley equation [2] which describes
the nerve pulse propagation in the nerve fibres and wall motion in liquid crystals [7,8]. For § = 0 and 6 = 1, the NPDE (1.1) is
reduced to the Burgers equation [2]| which describes the far field of the wave propagation in nonlinear dissipative systems
[9].

Many researchers used the compact finite difference (CFD) method for the solution of the NPDEs as in ([10-12], and ref-
erences therein). The main objective of this work is to obtain 2N order CFD scheme in space with a linearization approxima-
tion scheme in time, based on the characteristic method. After that we apply the collocation method to obtain a linear
system of algebraic equations that can be solved by direct or iterative methods at each subsequent time level to compute
the unknown coefficients of the basis function and then the solution is obtained. The linear approximation scheme is
obtained by using a backward finite difference method for the time derivative and then approximating the resulting equation
by using a Taylor series to deal with the convection term which is discretized explicitly.

The organization of this paper is as follows: In Section 2, a 2N order CFD method for the first, the second, the third, the
fourth and the fifth derivatives is presented. Section 3 is devoted to describe and analyze a full discretization to the suggested
scheme and the collocation method. Section 4 contains some numerical results for solving the two-dimensional unsteady
Burger’s equation, GBHE and GBFE to support the proposed numerical scheme. Finally, a conclusion is given in Section 5.

2. The compact finite difference method

Before giving the compact difference scheme, we introduce some notations. First, we construct M + 1 grid points (nodes)
in space by subdividing the interval [a,b] by points x; = a -+ ih for 0 < i< M and space step h = 2-¢. Secondly, we define

(n
i

. v)2 B . i)n
tive (;ﬁ)l and to the n derivative (2})

u; = u(x;,.) and we denote by uj, u,u ) the finite difference approximation to the first derivative (24),, to the second deriva-

; at the node i, respectively. Thirdly, we define the first and the second forward differ-

ence of u ati[13] as

Apl; = Uiy — U, (2.1)
Aju; = Ugyp — Ui + U, (2.2)
in general, any forward difference of u at i can be obtained by the following recurrence relation [13]
Alu; :AF(A;’Iu,»), n=1,2,.... (2.3)
Similarly, we define the first and the second backward difference of u ati [13] as
ABU,' = U; — Uj_q, (24)
Abuy = u; — 2ui 1 + Uiy, (2.5)

in general, any backward difference of u at i can be obtained by the following recurrence relation [13]
Alu; = Ag(A'uy), n=1,2,.... (2.6)
Finally, we denote the standard forward and backward finite difference operator for the first derivative by

Arlls Uiy — Us
ety = =H = B 2.7)

. Agl;  U; — U;_
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