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a b s t r a c t

One-dimensional models are important for developing, demonstrating and testing new
methods and approaches, which can be extended to more complex systems. We design
for a linear delay differential equation a reliable numerical method, which consists of
two time splits as follows: (a) It is an exact scheme at the early time evolution
�s 6 t 6 s, where s is the discrete value of the delay; (b) Thereafter, it is a nonstandard
finite difference (NSFD) scheme obtained by suitable discretizations at the backtrack
points. It is shown theoretically and computationally that the NSFD scheme is dynamically
consistent with respect to the asymptotic stability of the trivial equilibrium solution of the
continuous model. Extension of the NSFD to nonlinear epidemiological models and its good
performance are tested on a numerical example.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Delay differential equations are extensively used in the modeling of biological systems, specifically in the epidemiology of
infectious diseases [3,7,11]. One of the popular approaches in the study of the qualitative behavior of such models is their
linearization about the equilibria [3,10,11,17,18]. As a motivation, we consider the logistic delay model that arises in the
modeling of communicable diseases [11], including the transmission dynamics of gonorrhea in a homosexually active
population, [6]. In the latter specific case, the model is given by

I0ðtÞ ¼ b 1� 1
R0

� �
IðtÞ 1� Iðt � sÞ

N 1� 1
R0

� �
0
@

1
A; ð1Þ

where b is the contact rate, R0 the basic reproduction number, N the total population; s, is here and after the delay in infec-
tivity. It is evident from (1) that when R0 6 1, the only equilibrium is the disease free equilibrium (DFE), I� ¼ 0. However, if
R0 > 1, in addition to the DFE, there is an endemic equilibrium (EE), I�� ¼ Nð1� 1

R0
Þ. Linearizing (1) about the equilibria I� and

I��, we have
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R0

� �
Xðt � sÞ; XðtÞ ¼ IðtÞ � N 1� 1

R0

� �
;

ð2Þ

respectively. More generally, if the spread of a disease is modeled by a system of delay differential equations, such as in
[10,17,18], then linearization about the equilibrium points, with the Jacobian matrix assumed to be diagonizable, leads to
linearized delay differential equations of the type in (2). Thus, the general setting of this work is a linear delay differential
equation (LDDE),

x0ðtÞ ¼ AxðtÞ þ Bxðt � sÞ þ f ðtÞ t > 0;
xðtÞ ¼ /ðtÞ t 2 ½�s;0�;

ð3Þ

where A and B are constants, while f : ½0;þ1Þ ! R and / : ½�s;0� ! R are continuous functions, with / being the initial
function.

The well-posedness of LDDE (3) can be stated as follows [9]:

Theorem 1. Under the assumptions stated above, there exists a unique continuously differentiable function x : ½�s;þ1Þ ! R

which solves LDDE (3). The solution is represented by the Volterra integral equation

xðtÞ ¼ /ðtÞ; t 2 ½�s; 0�;

xðtÞ ¼ eAt/ð0Þ þ
Z t

0
eAðt�sÞ½Bxðs� sÞ þ f ðsÞ�ds; t P 0:

Regarding the qualitative feature of (3), we consider the homogeneous equation

x0ðtÞ ¼ AxðtÞ þ Bxðt � sÞ; ð4Þ

in which we assume without loss of generality that Aþ B – 0 so that x ¼ 0 is the only equilibrium point of (4). The charac-
teristic equation of (4) is the following transcendental function of the complex argument k:

k� A� Be�ks ¼ 0: ð5Þ

We have the following stability result ([5], Theorem 13.8):

Theorem 2. The equilibrium x ¼ 0 is asymptotically stable, or equivalently, all roots of (5) have their real parts strictly less than
zero if, and only if, the following two conditions hold:

(a) A < 1=s;

(b) A < �B <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1=sÞ2 þ A2

q
where a1 is the root of the equation a ¼ A tan a with 0 < a1 < p; a 2 R, on the understanding that

a1 ¼ p=2 if A ¼ 0.

In the absence of delay (s ¼ 0) and if f � 0, Equation LDDE (3) reduces to

x0ðtÞ ¼ ðAþ BÞxðtÞ; ð6Þ

Eq. (6) is the well-known exponential equation, which is of paramount importance from both the theoretical and numerical
analysis point of view in the study of dynamical systems, without delay, of the form

x0ðtÞ ¼ gðxÞ; gð0Þ ¼ 0: ð7Þ

The relevance of (6) from the constructive point of view hinges on the explicit and implicit knowledge of its exact scheme,
which is [16],

xnþ1 � xn

ðexp½ðAþ BÞDt� � 1Þ=ðAþ BÞ ¼ ðAþ BÞxn; ð8Þ

or

xnþ1 � xn

½1� expð�ðAþ BÞDtÞ�=ðAþ BÞ ¼ ðAþ BÞxnþ1; ð9Þ

where xn denotes here and after an approximation of the solution xðtÞ at the discrete time tn ¼ nDt;n ¼ 0;1;2; . . . ;Dt being
the time step size. Most reliable nonstandard finite difference (NSFD) schemes for Eq. (7) are designed on the basis of the
exact scheme (8) or (9), assuming that (6) is the linearized equation of (7) about the trivial equilibrium.

The purpose of this work is to design reliable NSFD schemes for LDDE (3). The ideal situation is to produce its exact
scheme. According to Theorem 1.1 in [16], an exact scheme is readily determined once the solution of the continuous dif-
ferential model is known. However, this theorem does not apply here because the second formula in Theorem 1 is an integral
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