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a b s t r a c t

The stress field of a laminated cantilever beam is analyzed under the influence of symmet-
ric and anti-symmetric arrangements of discrete stiffeners at the opposing longitudinal
surfaces. An efficient finite-difference computational scheme is developed, in which a
new displacement potential is introduced to model the problem of laminated composites.
Solutions of stresses at different plies of the laminated cantilever are obtained, some of
which, especially those around the critical regions of stiffeners are presented. The
effectiveness and accuracy of present approach is verified by comparing the results with
the corresponding solutions of analytical as well as standard computational methods.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The mechanics of composite materials has now become a key subject in the field of solid mechanics. Now-a-days the use
of laminated composites is found to increase extensively in almost all areas of structural applications, especially in the con-
struction of aerospace as well as marine structures. In these structural components, the use of stiffeners is quite extensive,
which are basically designed to meet the specific requirements of local strength or stiffness. A comprehensive and accurate
analysis of stresses in stiffened structures is of great practical interest, since only it can lead a designer to an appropriate
selection of the structural parameters.

Among the existing mathematical models for stress analysis of boundary-value problems of elasticity, the stress-function
and displacement formulation approaches are noticeable [1–4]. However, the difficulties involved in trying to solve practical
stress problems using the existing models have been pointed out by several researches [5,6]. The analytical methods of
solution could not gain that much popularity in the field of stress analysis of composite structures, mainly because of the
inability of dealing with the mixed and variable nature of physical conditions as well as complex boundary shapes, which
are, however, very common in case of actual structures. Stress analysis of stiffened composite structures is mainly handled
by numerical methods, especially, the finite element method (FEM). The method has received widespread applications in
various aspects of structural analysis, especially for composite structures, a few of which are cited in reference [7–10].
Reliable and accurate prediction of critical stresses, especially at the surfaces of engineering structures is of great importance
as far as reliable, safe and economic design is concerned. The uncertainties associated with the accurate prediction of surface
stresses by the conventional computational approaches have been pointed out by several researches [11–13]. Moreover, the
lack of reliable and accurate alternative computational approaches for the analysis of stress problems, specially of laminated
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composites is realized with due importance, particularly when the appropriateness and accuracy of the solutions obtained by
conventional approaches are required to be verified. It would be worth mentioning that, for most of the practical problems of
solid mechanics, closed-form exact analytical solutions are hardly available in the literature.

The finite-difference method (FDM) is an ideal numerical technique for obtaining direct numerical solutions of
differential equations. Introducing a new boundary modeling approach for finite difference applications of the displacement
formulation of solid mechanics, Dow et al. [13] solved the problem of a cantilever beam and reported that the accuracy of
FDM in reproducing the state of stresses along the bounding surfaces was much higher than the corresponding accuracy of
FE analysis. Comparing the performances of available modeling approaches for the analysis of composite beams with partial
shear interactions, the FDM was determined to be an adequate numerical tool for describing the composite behavior of
beams, and the corresponding FD solutions were shown to be more accurate when compared with the usual eight
degree-of-freedom FEM solutions, even when finer discretization was used for the FEM solutions [14]. Recently, analyzing
the results of orthotropic composite panels, the superiority of a potential-function based FDM was verified over conventional
computational method in predicting stresses, especially at the regions of transition of boundary conditions [15].

Recently, a general potential-function formulation [16] has been proposed for the analysis of anisotropic composite struc-
tures. The formulation has then been extended to the problems of orthotropic composite materials and obtained numerical
as well as analytical solutions for a number of composite structures [15,17–18]. The structural durability of a composite pan-
el with a discontinuous stiffener was investigated under compressive loading induced by the gradual displacement of an end
support, using the composite durability structural analysis (CODSTRAN) computer code [19]. Using a layer-wise shell theory,
a modeling approach of discretely stiffened laminated composite plates and cylindrical shells has been reported for the ana-
lysis of stress, vibration and buckling [20]. The existing layer-wise displacement theory of laminated plates was also applied
to analyze laminated beams, and analytical solutions were obtained for static bending and free vibration of the beam [21].
Serious attempts had hardly been made so far that can provide accurate and reliable information about local stresses at the
critical regions of a laminated cantilever under the influence of discrete stiffeners.

In this paper, the displacement-potential formulation is first extended for the problems of symmetric cross-ply laminated
composites, wherein the potential of a new variable reduction scheme [16] is used. Based on the formulation, a finite-differ-
ence computational scheme is developed for the numerical solution of displacement, strain and stresses in the laminate as
well as individual plies. The displacement potential method (DPM) is then applied to investigate the elastic field of a laminat-
ed cantilever beam under the influence of symmetric and anti-symmetric arrangements of discrete stiffeners. Some of the
practical issues of interest, for example, ply stresses, stacking sequence, stiffening length, etc. are also analyzed and dis-
cussed in context of the present composite beam. Finally, in order to check the appropriateness as well as accuracy of the
present DPM, results of stiffened as well as un-stiffened cantilevers are compared with the corresponding solutions obtained
by standard computational method as well as analytical method where available.

2. Displacement-potential field formulation for laminated composites

The global stress–strain relations for symmetric cross-ply laminated composites can be expressed through the extensional
stiffness matrix [A], under plane stress condition, as follows [22]
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where, rij and eij are the components of stress and strain, respectively, and h is the overall thickness of the laminate. The
elements of stiffness matrix (Aij) are given by [22]

A11 ¼
Xn

k¼1

�Q 11 hk � hk�1ð Þ; A12 ¼
Xn

k¼1

�Q 12 hk � hk�1ð Þ; A22 ¼
Xn

k¼1

�Q 22 hk � hk�1ð Þ;

A66 ¼
Xn

k¼1

�Q 66 hk � hk�1ð Þ;

where,

�Q11 ¼ Q11 cos4 hþ 2 Q12 þ 2Q 66ð Þ sin2 h cos2 hþ Q 22 sin4 h;

�Q12 ¼ Q12 sin4 hþ cos4 h
� �

þ Q 11 þ Q 22 � 4Q 66ð Þ sin2 h cos2 h;

�Q22 ¼ Q11 sin4 hþ 2 Q 12 þ 2Q 66ð Þ sin2 h cos2 hþ Q22 cos4 h;
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