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a b s t r a c t

In this paper, a new gradient projection method is proposed, which generates a feasible
matrix sequences. The decent property of this method is proved. Based on the decent prop-
erty, the convergence of the new method is discussed. Moreover, a sufficient and necessary
condition for the optimal matrix is obtained. Finally, numerical experiments show the new
method is effective in precision.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The matrix completion problem occurs in many areas of engineering and applied science such as machine learning [1,2],
control [8] and computer vision[12]. There is a rapidly growing interest for this issue. As extension of the matrix completion
problem, Candés and Recht [4], Recht et al. [9] consider the following optimization model:

minimize kXk�
subject to Xij ¼ Mij; ði; jÞ 2 X;

ð1:1Þ

where the functional kXk� is the nuclear norm of the matrix M, the unknown matrix M 2 Rn�n of rank r is square, and that one
has available m sampled entries fMij : ði; jÞ 2 Xg with X is a random subset of cardinality m.

For the convex optimization, because minimizing the nuclear norm both provably recovers the lowest-rank matrix sub-
ject to constraints (see [9] for details) and gives generally good empirical results in a variety of situations, it is understand-
ably of great interest to develop numerical methods for solving (1.1). In [4], this optimization model was solved by exploiting
one of the most advanced semidefinite programming solvers, namely, SDPT3 [10]. This solver is based on interior-point
methods and problematic when the size of the matrix is large because they need to solve huge systems of linear equations
to compute the Newton direction. Cai e.g. [3] presented the singular value thresholding (SVT) method for approximately
solving the nuclear norm minimization problem (1.1). This method is a simple and efficient first-order matrix completion
method to recover the missing values when the original data matrix is of low rank, and is especially well suited for problems
of very large sizes in which the solution has low rank. However, SVT is computationally expensive when the size of the data
matrix is large, which significantly limits its applicability. Next, Hu et al. [6] give an accelerated singular values thresholding
method (ASVT) by solving the dual problems. Combettes and Wajs [5] introduced the proximal forward–backward splitting,
Toh and Yun [11] proposed some working implementations, Tseng [13] proposed the accelerated proximal gradient meth-
ods. Lin et al. [7] proposed the augmented Lagrange multiplier (ALM) methods. But these methods have a disadvantage of the
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penalty function: transformed the constraint optimization into the unconstraint optimization problem by penalty, which
should result in a matrix sequence fXkg generated by these methods is not feasible. So that the accepted solution is not fea-
sible. Even though the interior point methods [4,10] generated a feasible matrix sequence, but the computation is large
enough when the size of the matrix is large, because they need to solve the huge systems of linear equations to compute
the Newton direction. These motivated us come up with the gradient projection method for matrix completion. First, we
decrease the nuclear norm by using the singular value thresholding method. Second, we project the matrix to a feasible
point, and generate a feasible matrix sequence.

Here are some notations and preliminaries. Let X � f1;2; . . . ;mg � f1;2; . . . ;ng denote the indices of the observed entries
of the matrix X; �X denote the indices of the missing entries. kXk2; kXk�; kXkF denote 2-norm, the nuclear norm and F-norm,

respectively. We denote by hX;Yi ¼ traceðX�;YÞ the inner product between two matrices ðkXk2
F ¼ hX;XiÞ. The Cauchy–

Schwartz inequality gives hX;Yi 6 kXkF � kYkF and it is well known that hX;Yi 6 kXk2 � kYk� [4,13].
Let PX be the orthogonal projection operator on the span of matrices vanishing outside of X. So that the ði; jÞth component

of PXðXÞ is equal to Xij when ði; jÞ 2 X, and zero otherwise.
The rest of the paper is organized as follows. After we provide a brief review of the standard SVT and the ALM methods, a

new gradient projection method is proposed in Section 2. Some properties and convergence of the new method are discussed
in Section 3. Finally, numerical experiments are shown and comparison to other methods in Section 4.

2. Methods

First of this section, for completeness as well as purpose of comparison, we briefly review and summarize other two
methods for solving the matrix completion problem (1.1).

2.1. The method of singular value thresholding (the SVT method)

The ‘‘shrinkage’’, DsðXÞ is soft-thresholding operator as follows,

DsðXÞ ¼ URsVT ; ð2:1Þ

Rs ¼ diagðmaxðri � s;0ÞÞ;
X ¼ URVT ;

R ¼ diagðriÞ;

8><
>: ð2:2Þ

The singular value thresholding method is in [3] solves a convex optimization (1.1):

Method 2.1. Given X � fði; jÞ; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;ng; PXðMÞ of the matrix M 2 Rm�n.

Fix s > 0 and a sequence fdkg of positive step sizes. Starting with Y0, inductively define for k ¼ 1;2; . . .,

1. Xk ¼ DsðYk�1Þ.
2. Yk ¼ Yk�1 þ dkPXðM � XkÞ.
3. If kPXðXk �MÞkF < ekPXðMÞkF , stop; otherwise, k kþ 1, go to 1.

where 0 < dk < 2;X 2 Rm�n is a matrix of rank r, and U;V are respectively m� r and n� r matrices with orthonormal col-
umns, and the singular values ri are positive.

2.2. The method of augmented lagrange multipliers (the ALM method)

The augmented Lagrange multipliers method is in [7] solves a convex optimization (1.1). The problem (1.1) admits the
following equivalent form,

minimize kXk�
subject to X þ E ¼ M; pXðEÞ ¼ 0; ð2:3Þ

where pX : Rm�n ! Rm�n is a linear operator that keeps the entries in X unchanged and sets those outside X (i.e., in X) zeros.
As E will compensate for the unknown entries of M, the unknown entries of M are simply set as zeros. Then the partial aug-
mented Lagrange function is

LðX; E;Y ;lÞ ¼ kXk� þ hY;M � X � Ei þ l
2
kM � X � Ek2

F :

The augmented Lagrange multipliers method is described in the following:
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