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a b s t r a c t

This paper reviews our very recent research focused on modelling of the phononic
structures using homogenization of high contrast elastic media. We consider the
Reissner–Mindlin type of the homogenized plate which involves frequency-dependent
mass coefficients associated with the plate cross-section rotations and the plate deflec-
tions. Frequency intervals called band gaps exist for which these coefficients constituting
the effective mass matrix can be negative, such that the propagation of elastic waves is
restricted, or even stopped. We propose a spectral decomposition based method which
is suitable to compute the structure response to an external harmonic loading by forces
with frequencies in range of the band gaps. Numerical illustrations are given.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The phononic plates are periodic structures made of elastic components with large differences in their elastic coefficients;
they mimic behaviour of the phononic crystals. Depending on the geometric arrangement of the components it is possible to
modulate the plate responses. Modelling of such devices has received an increasing attention (see e.g. [1,2]) for their poten-
tial applications in the design of filters, resonators, and waveguides.

This study presents a contribution to the very challenging area of the metamaterial engineering in the context of struc-
tural vibration control, where plate and shell structures are frequently used. The phenomenon which is responsible for the
band gaps occurrence is related to anti-resonance effects in large contrast elastic media with periodic structures. Homoge-
nization of such structures provides models of equivalent continua with indefinite or negative mass for certain frequencies,
as reported in a number of papers [3–6]. Another promising approach which treats such structures in the framework of the
generalized continua was followed e.g. in [7] where a relaxed micromorphic continuum model was studied. Such approach is
also related to this work since the Reissner–Mindlin plates represent, in a way, a generalized continuum, cf. [8].

To derive the phononic plate model we followed the approach of [4,9]. In [10] we applied the two-scale homogenization
to obtain limit plate models. Two cases were studied: 1) according to the Reissner–Mindlin (R–M) theory the plate deforma-
tion was described by the mid-plane deflections and by rotations of the plate cross-sections which accounted for the shear
stress effects; 2) using the Kirchhoff–Love theory, the plate deflections were described by the bi-harmonic operator, thus
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neglecting the shear effects. In both cases we assumed such heterogeneities which depend on the mid-plate coordinates
only, but do not change with the transversal coordinate. As an example we consider plates with soft cylindrical inclusions
embedded in a stiffer matrix. The resulting homogenized plate models contain homogenized mass coefficient matrices,
which for some frequencies of applied forces can be negative definite or semi-definite. The wave dispersion of guided plane
waves was reported in [11]; we showed existence of band gaps in a guided wave propagation in an infinite homogenized R–
M plate. For the K–L plate there is always a propagating wave even though the mass tensor associated with the plate rota-
tions is negative-definite. For standing waves the band gap phenomenon is influenced by boundary conditions.

In our present work we consider the Reissner–Mindlin type phononic plate and focus on the analysis of its responses
under the loading by oscillating forces in the frequency ranges of band gaps. We recall that the model has been derived
in [12,10] using the homogenization approach.

In Section 3 we propose a spectral decomposition based method for analysis of phononic plate response which takes into
account specific boundary conditions. If the mass coefficient matrix ðMijÞ; i; j ¼ 1;2;3, is indefinite for a given frequency of
imposed loading, the spectrum of the matrix is split into positive and negative parts and the plate equations for deflection
and two rotations (in the sense of the R–M kinematic ansatz; the in-plane displacement modes are treated separately) are
split into two transformed subsystems with positive and negative semi-definite diagonal mass matrices. For these subsys-
tems (one negative and one positive), eigenfunctions nþr ; n

�
s and eigenvalues lþr ; l�s are computed, so that two modal bases

fnþr g; fn
�
s g can be introduced in which the plate responses are expressed. It is important that fnþr g and fn�s g are not orthog-

onal in an energetic product associated with the transformed subsystems. This implies that the two subsystems are coupled,
so that computations of solution coefficients cþr and c�s , as associated with the two bases, are not straightforward. The real
structural response for frequencies in the band gaps is expressed using the sum

P
rc
þ
r nþr .

Using numerical models we illustrate the spectral decomposition based method proposed in this paper to analyze the
plate response to a harmonic loading. The aim is to present different types of band gaps in the context of the mode
polarization.

1.1. The Reissner–Mindlin heterogeneous plates

We consider heterogeneous structures associated with a given scale parameter e > 0, which is the ratio between the char-
acteristic lengths of the microstructure and the wave length which is also proportional to the macroscopic lengths. In Sec-
tion 2 we report the homogenization limit result obtained for e! 0 in our work [10]. In what follows the superscript e is
employed to indicate the dependence of oscillating functions on the scale.

We assume the plate X is constituted by the matrix Xe
m which must be a connected domain, and by periodically distrib-

uted inclusions; their collection forms a domain Xe
c . Thus, X ¼ Xe

m [Xe
c [ Ce, where Ce ¼ Xe

m \Xe
c . Inclusions are discon-

nected, having the size � e.
The microstructure is generated as a periodic lattice using the representative periodic cell (RPC) denoted by Y. For sim-

plicity, we consider a rectangular RPC with the following definition: Y ¼ P2
i¼1�0;1½� R2. The domain Y is decomposed in

accordance with X into the matrix part Ym and the inclusion Yc , so that Yc � Y is strictly contained in Y and Ym ¼ Y n Yc .
Material parameters e ¼ ðCe

ijklÞ, the plane stress elasticity tensor, and ce, the shear stiffness coefficient, vary periodically
through X. For the sake of simplicity we shall consider only piece-wise constant isotropic material. To retain the phononic
effect in the homogenized plate, following the analogous approach employed in the case of phononic 3D periodic structures,
we introduce the scaling of the material coefficients in the inclusions:

eðxÞ ¼ ve
cðxÞe2 c þ ve

mðxÞ m;

ceðxÞ ¼ ve
cðxÞe2cc þ ve

mðxÞcm:
ð1Þ

The standard properties (assuming positive Lamé constants) of constant tensors c; m and coefficients cc; cm are assumed.
The density of the two materials is assumed to be of the same order of magnitude, therefore we shall consider

qeðxÞ ¼ ve
cðxÞqc þ ve

mðxÞqm; q 6 qs
6 q; s ¼ m; c where q; q are given positive real numbers.

According to the definition (1), for a real material with a given size of the microstructure and the size of the plate, the
scale parameter e0 > 0 can be obtained. The stiffness constants e0 ¼ e2

0 c and ce0 ¼ e2
0cc for positions in the inclusions are

defined by realistic ‘‘physical’’ values which then yield c and cc , by the direct consequence. The limit model obtained by
the homogenization, i.e. for e! 0, provides an approximation of a real material behaviour; its quality depends on the real
contrast r ¼ j e0

c j=j mj � jce0
c j=jcmj. In [9] we demonstrated on numerical examples with 2D phononic structures, how this

contrast between the two materials influences the accuracy of modelling the wave dispersion by the homogenized model.

1.2. The Reissner–Mindlin plate model

The plate model can be derived by an asymptotic analysis of the three-dimensional elasticity problem imposed in
X�� � h;h½, where X � R2 is an open bounded domain with regular boundary @X and h is the plate thickness. In the time
interval ½0; T� the plate undergoes the following two modes of displacements: the in-plane ‘‘membrane modes’’ described
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