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a b s t r a c t

In this paper, we first provide convergence results of three relaxation iterative methods for
solving saddle point problem. Next, we propose how to find near optimal parameters for
which preconditioned Krylov subspace method performs nearly best when the relaxation
iterative methods are applied to the preconditioners of Krylov subspace method. Lastly,
we provide efficient implementation for the relaxation iterative methods and efficient
computation for the preconditioner solvers. Numerical experiments show that the MIAOR
method and the BiCGSTAB with MAOR preconditioner using near optimal parameters per-
form more than twice faster than the GSOR method.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider relaxation iterative methods for solving the following saddle point problem
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where A 2 Rm�m is a symmetric positive definite matrix, and B 2 Rm�n is a matrix of full column rank with m P n. This prob-
lem (1) appears in many different scientific applications, such as constrained optimization [13], the finite element approx-
imation for solving the Navier–Stokes equation [7,8], and the constrained least squares problems and generalized least
squares problems [1,3,16,18]. There have been many methods for solving the saddle point problem (1). Golub et al. [9] pro-
posed the Successive OverRelaxation-like (SOR-like) method, Bai et al. [3] proposed the Generalized Successive OverRelax-
ation (GSOR) method and the Generalized Inexact Accelerated OverRelaxation (GIAOR) method, Bai and Wang [4] proposed
the Parameterized Inexact Uzawa (PIU) method, Li et al. [10] proposed the Accelerated OverRelaxation-like (AOR-like)
method, Shao et al. [11] proposed the modified SOR-like method, Zheng et al. [20] and Darvishi and Hessari [6] proposed
and studied the Symmetric Successive OverRelaxation-like (SSOR-like) method, Wu et al. [14] proposed the modified
SSOR-like method, Zhang and Lu [19] and Chao et al. [5] studied the Generalized Symmetric Successive OverRelaxation
(GSSOR) method, Yun [17] proposed the Uzawa Symmetric Accelerated OverRelaxation (Uzawa-SAOR) method, and so on.

For simplicity of exposition, some notation and definitions are presented. For a vector x; x� denotes the complex conju-
gate transpose of the vector x. kminðHÞ and kmaxðHÞ denote the minimum and maximum eigenvalues of the Hermitian matrix
H, respectively. For a square matrix G; NðGÞ denotes the null space of G; rðGÞ denotes the set of all eigenvalues of G, and qðGÞ
denotes the spectral radius of G.
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The purpose of this paper is to provide convergence results of three relaxation iterative methods and an application of the
relaxation iterative methods to the preconditioners of Krylov subspace method for solving the saddle point problem (1). This
paper is organized as follows. In Section 2, we provide convergence result for the Modified Inexact Accelerated OverRelaxation-
like (MIAOR) method. In Section 3, we provide an improved convergence result for the GSSOR method. In Section 4, we provide
convergence result for the UnSymmetric Successive OverRelaxation-like (USSOR) method. In Section 5, we propose how to find
near optimal parameters for which preconditioned Krylov subspace method performs nearly best when the relaxation itera-
tive methods are applied to the preconditioners of Krylov subspace method. In Section 6, we provide efficient implementation
for three relaxation iterative methods, and then we provide efficient computation for the preconditioner solvers which are one
of the main computational kernels of Krylov subspace method. In Section 7, numerical experiments are carried out to examine
the effectiveness of three relaxation iterative methods studied in this paper. Lastly, some conclusions are drawn.

2. Convergence result for the MIAOR method

For the coefficient matrix of the saddle point problem (1), we consider the following splitting

A ¼
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where P 2 Rm�m is a symmetric positive definite matrix which approximates A; Q 2 Rn�n is a symmetric positive definite
matrix which approximates the approximated Schur complement matrix BT P�1B, and aþ b ¼ 1 with 0 6 a 6 1. Then the
modified inexact AOR-like method (MIAOR) for solving the saddle point problem (1) is defined by
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where
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P 0
�rBT ð1� arÞQ

� ��1 P �xA �xB

ðx� rÞBT ð1� arÞQ

� �
;

Mða; r;xÞ ¼ xðD� rLÞ�1 ¼ x
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x > 0 and ð1� arÞ – 0. Notice that ð1� arÞ – 0 is required for the MIAOR method to be well defined. If P ¼ A, then the
MIAOR method reduces to the modified AOR-like method (MAOR). If P ¼ A and x ¼ r, then the MIAOR method reduces to
the modified SOR-like method (MSOR).

Let k be an eigenvalue of Hða; r;xÞ and u
v

� �
be the corresponding eigenvector. Then we have
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or equivalently,

ð1� kÞPu�xAu ¼ xBv;
ðx� r þ krÞBT u ¼ ðk� 1Þð1� arÞQv :

ð4Þ

Since A is a symmetric positive definite matrix and B is a matrix of full column rank, it can be easily shown that k – 1 and
u – 0. We first introduce the following lemma in [4] with a simple proof.

Lemma 2.1 [4]. Assume that the matrices A; P; Q and B are defined as above. Define gðuÞ ¼ u�Au
u�Pu and lðuÞ ¼ u�BQ�1BT u

u�Pu for a
nonzero vector u. Then

(a) 0 < kminðP�1AÞ 6 gðuÞ 6 kmaxðP�1AÞ ¼ qðP�1AÞ,
(b) lmin ¼minuRNðBT ÞlðuÞ ¼ minfkjk 2 rðQ�1BT P�1BÞg,
(c) lmax ¼maxuRNðBT ÞlðuÞ ¼maxfkjk 2 rðQ�1BT P�1BÞg ¼ qðQ�1BT P�1BÞ.

Proof. Since P�1A is similar to P�
1
2AP�

1
2 which is symmetric positive definite, it is easy to show that

kminðP�1AÞ ¼min
u–0

gðuÞ and kmaxðP�1AÞ ¼ max
u–0

gðuÞ:

From these relations, part (a) follows. Since P�1BQ�1BT is similar to P�
1
2BQ�1BT P�

1
2 which is symmetric positive

semidefinite,
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