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a b s t r a c t

We investigate a nonsmooth vector optimization problem with a feasible set defined by a
generalized inequality constraint, an equality constraint and a set constraint. Both neces-
sary and sufficient optimality conditions of first and second-order for weak solutions
and firm solutions are established in terms of Fritz-John–Lagrange multiplier rules using
set-valued directional derivatives and tangent cones and second-order tangent sets. We
impose steadiness and strict differentiability for first and second-order necessary condi-
tions, respectively; stability and l-stability for first and second-order sufficient conditions,
respectively. The obtained results improve or include some recent known ones. Several
illustrative examples are also provided.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the last years, first and second-order optimality conditions for optimization problems have been investigated inten-
sively in numerous publications (see [1–28] and references therein). In nonsmooth optimization, the major approach to opti-
mality conditions is using generalized derivatives to replace Fréchet and Gâteaux derivatives which do not exist. Several
kinds of derivatives have been utilized such as pseudo Jacobian and Hessian [12], second-order subdifferentials [7], first
and second-order approximations [6,18], directional derivatives [1,24,26], Neustadt derivatives [21,22] and set-valued direc-
tional derivatives [2,3,8,9,11,15,17,19,20]. This paper is concerned with necessary and sufficient optimality conditions of first
and second-order for possibly infinite-dimensional nonsmooth vector optimization, using set-valued directional derivatives
as generalized derivatives. The optimization problem under our consideration is

min f ðxÞ; s:t:x 2 S; gðxÞ 2 �K;hðxÞ ¼ 0; ðPÞ

where f : X ! Y ; g : X ! Z, and h : X !W are mappings, X and W Banach spaces, Y and Z normed spaces, S � X;C � Y a closed
convex cone, and K � Z a convex set.

First-order and second-order optimality conditions for (P) in terms of pseudo Jacobian and Hessian matrices of continu-
ous and continuously differentiable functions, respectively (shortly resp), were established by Luc–Jeyakumar [12]. In [15],
Jiménez–Novo used the notion of (first-order) contingent derivatives of single-valued maps to develop first-order optimality
conditions for (P) under steadiness or stability assumptions of data in finite dimensional spaces. Second-order smooth opti-
mality conditions with the envelope-like effect for (P) (where Y ¼ R) via a Kuhn-Tucker–Lagrange multiplier rule were given
by Kawasaki [16]. His results were developed by various authors in [4,5,23,25,26], considering always C2 scalar programs and
by Maruyama in [22], studying nonsmooth scalar problem (P) and using the notion of second-order Neustadt derivatives. In
vector programming, the first result of this type was given in [13,14] for smooth cases. In finite-dimensional nonsmooth
multiobjective programming, Gutiérrez–Jiménez-Novo [11] used set-valued second-order directional derivatives to establish
second-order optimality conditions with the envelope-like effect. They considered Fréchet differentiable functions whose

http://dx.doi.org/10.1016/j.amc.2014.11.061
0096-3003/� 2014 Elsevier Inc. All rights reserved.

Applied Mathematics and Computation 251 (2015) 300–317

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.11.061&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.11.061
http://dx.doi.org/10.1016/j.amc.2014.11.061
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


Fréchet derivative is continuous or stable at the point of study. Their results were generalized by Khanh–Tuan in [18,19],
using approximations and set-valued directional derivatives, resp, under relaxed assumptions of data: (strict) differentiabil-
ity or l-stability. Motivated by the works reported in [4,5,11–16,18,19,22,23,25,26], in this note we develop first-order nec-
essary and sufficient optimality conditions and second-order ones with the envelope-like effect for problem (P) in possibly
infinite-dimensional normed spaces by using set-valued directional derivatives and tangent cones and second-order tangent
sets. For the first time, to our knowledge, we employ (second-order) asymptotic directional derivatives of single-valued vec-
tor functions. We impose steadiness and strict differentiability for first and second-order necessary conditions, resp; stability
and l-stability for first and second-order sufficient conditions, resp. The obtained results improve or include some known
ones in scalar or vector optimization (see for instance [7,11,15,16,33]).

The organization of the paper is as follows. In Section 2 we recall some preliminary facts, including those concerning
l-stable functions and second-order tangency. Section 3 is devoted to set-valued directional derivatives and properties which
will be in use. In Section 4, we establish first and second-order necessary optimality conditions for local weak solutions of
(P). Section 5 contains first and second-order sufficient optimality conditions for local firm solutions.

2. Mathematical preliminaries and auxiliary results

Our notations are basically standard. N ¼ f1;2; . . . ;n; . . .g and R is the set of real numbers. For a normed space X;X� stands
for the topological dual of X; h:; :i is the canonical pairing. k:k is used for the norm in any normed space (from the context no
confusion occurs). dðy; SÞ denotes the distance from a point y to a set S. Bnðx; rÞ ¼ fy 2 Rn : kx� yk < rg; Sn ¼
fy 2 Rn : kyk ¼ 1g;BXðx; rÞ ¼ fy 2 X : kx� yk < rg and SX ¼ fy 2 X : kyk ¼ 1g. BðX;XÞ is the space of bounded bilinear map-
pings from X � X into R. For a cone C � X;C� ¼ fc� 2 X� : hc�; ciP 0;8c 2 Cg is the positive polar cone of C. For A � X, intA,
clA, bdA, coneA, coA, and AðxÞ stand for the interior, closure, boundary, conical hull, convex hull of A and, conical hull of
the translate Aþ x, resp. For t > 0 and k 2 N; oðtkÞ designates a point in a considered space (which is clear from the context)
depending on t such that oðtkÞ=tk ! 0 as t ! 0þ. C1;1 is used for the space of Fréchet differentiable mappings whose Fréchet
derivative is locally Lipschitz.

Now we recall the notions of tangent cones and second-order tangent sets that we will use later. Let X be a normed space.

Definition 2.1. Let x0;u 2 X; S � X and c 2 f0;1g.
(a) The contingent (or Bouligand) cone of S at x0 is

TðS; x0Þ ¼ v 2 X : 9tk ! 0þ;9vk ! v ;8k 2 N; x0 þ tkvk 2 S
� �

:

(b) The interior tangent cone of S at x0 is

ITðS; x0Þ ¼ v 2 X : 8tk ! 0þ;8vk ! v ;8k large enough; x0 þ tkvk 2 S
� �

:

(c) The second-order contingent set of index c of S at ðx0;uÞ is

T2
cðS; x0;uÞ ¼ w 2 X : 9ðtk; rkÞ ! ð0þ;0þÞ :

tk

rk
! c;9wk ! w;8k 2 N; x0 þ tkuþ 1

2
tkrkwk 2 S

� �
:

(d) The second-order adjacent set of index c of S at ðx0;uÞ is

A2
cðS; x0;uÞ ¼ w 2 X : 8ðtk; rkÞ ! ð0þ;0þÞ :

tk

rk
! c; 9wk ! w;8k 2 N; x0 þ tkuþ 1

2
tkrkwk 2 S

� �
:

(e) The second-order interior tangent set of index c of S at ðx0;uÞ is

IT2
cðS; x0;uÞ ¼ w 2 X : 8ðtk; rkÞ ! ð0þ;0þÞ :

tk

rk
! c;8wk ! w;8k large enough;x0 þ tkuþ 1

2
tkrkwk 2 S

� �
:

When c ¼ 0, the sets T2
0ðS; x0;uÞ;A2

0ðS; x0; uÞ and IT2
0ðS; x0; uÞ are cones and called the asymptotic second-order contingent

cone, the asymptotic second-order adjacent cone and the asymptotic second-order interior tangent cone, resp. When c ¼ 1,

the sets T2
1ðS; x0;uÞ;A2

1ðS; x0;uÞ and IT2
1ðS; x0;uÞ are said to be the second-order contingent set, the second-order adjacent set

and the second-order interior tangent set, resp. The cones TðS; x0Þ and ITðS; x0Þ and the sets T2
1ðS; x0;uÞ;A2

1ðS; x0;uÞ and

IT2
1ðS; x0;uÞ are well-known. The cones A2

0ðS; x0;uÞ and T2
0ðS; x0;uÞ were used by Penot [25,26]. The cone IT2

0ðS; x0; uÞ was intro-
duced by Giorgi et al. [10]. For a systematics survey of second-order tangent sets and their application to vector optimization,
see [10]. Note that if x0 R clS, then all the above tangent sets are empty.

Some basic properties of the above first-order and second-order tangent sets are listed in the following proposition.

Proposition 2.1. Let x0;u 2 X; S � X and c 2 f0;1g. Then, the following are satisfied

(i) IT2
cðS; x0;uÞ � A2

cðS; x0;uÞ � T2
cðS; x0;uÞ � clcone½coneðS� x0Þ � u�;
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