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1. Introduction

In the last years, first and second-order optimality conditions for optimization problems have been investigated inten-
sively in numerous publications (see [1-28] and references therein). In nonsmooth optimization, the major approach to opti-
mality conditions is using generalized derivatives to replace Fréchet and Gateaux derivatives which do not exist. Several
kinds of derivatives have been utilized such as pseudo Jacobian and Hessian [12], second-order subdifferentials [7], first
and second-order approximations [6,18], directional derivatives [1,24,26], Neustadt derivatives [21,22] and set-valued direc-
tional derivatives [2,3,8,9,11,15,17,19,20]. This paper is concerned with necessary and sufficient optimality conditions of first
and second-order for possibly infinite-dimensional nonsmooth vector optimization, using set-valued directional derivatives
as generalized derivatives. The optimization problem under our consideration is

min f(x),s.txeS, gx) e —K,h(x)=0, (P)

wheref:X —Y,g:X — Z,and h : X — W are mappings, X and W Banach spaces, Y and Z normed spaces, S ¢ X,C C Y a closed
convex cone, and K C Z a convex set.

First-order and second-order optimality conditions for (P) in terms of pseudo Jacobian and Hessian matrices of continu-
ous and continuously differentiable functions, respectively (shortly resp), were established by Luc-Jeyakumar [12]. In [15],
Jiménez-Novo used the notion of (first-order) contingent derivatives of single-valued maps to develop first-order optimality
conditions for (P) under steadiness or stability assumptions of data in finite dimensional spaces. Second-order smooth opti-
mality conditions with the envelope-like effect for (P) (where Y = R) via a Kuhn-Tucker-Lagrange multiplier rule were given
by Kawasaki [ 16]. His results were developed by various authors in [4,5,23,25,26], considering always C* scalar programs and
by Maruyama in [22], studying nonsmooth scalar problem (P) and using the notion of second-order Neustadt derivatives. In
vector programming, the first result of this type was given in [13,14] for smooth cases. In finite-dimensional nonsmooth
multiobjective programming, Gutiérrez-Jiménez-Novo [11] used set-valued second-order directional derivatives to establish
second-order optimality conditions with the envelope-like effect. They considered Fréchet differentiable functions whose
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Fréchet derivative is continuous or stable at the point of study. Their results were generalized by Khanh-Tuan in [18,19],
using approximations and set-valued directional derivatives, resp, under relaxed assumptions of data: (strict) differentiabil-
ity or I-stability. Motivated by the works reported in [4,5,11-16,18,19,22,23,25,26], in this note we develop first-order nec-
essary and sufficient optimality conditions and second-order ones with the envelope-like effect for problem (P) in possibly
infinite-dimensional normed spaces by using set-valued directional derivatives and tangent cones and second-order tangent
sets. For the first time, to our knowledge, we employ (second-order) asymptotic directional derivatives of single-valued vec-
tor functions. We impose steadiness and strict differentiability for first and second-order necessary conditions, resp; stability
and [-stability for first and second-order sufficient conditions, resp. The obtained results improve or include some known
ones in scalar or vector optimization (see for instance [7,11,15,16,33]).

The organization of the paper is as follows. In Section 2 we recall some preliminary facts, including those concerning
I-stable functions and second-order tangency. Section 3 is devoted to set-valued directional derivatives and properties which
will be in use. In Section 4, we establish first and second-order necessary optimality conditions for local weak solutions of
(P). Section 5 contains first and second-order sufficient optimality conditions for local firm solutions.

2. Mathematical preliminaries and auxiliary results

Our notations are basically standard. N = {1,2,...,n,...} and R is the set of real numbers. For a normed space X, X" stands
for the topological dual of X; (., .) is the canonical pairing. ||.|| is used for the norm in any normed space (from the context no
confusion occurs). d(y,S) denotes the distance from a point y to a set S. By(x,r)={yeR":||x—y|| <r},Sp =
{yeR":|ly| =1},Bx(x,r) ={yeX:|x—y| <r}and Sx = {y € X : |ly|| = 1}. B(X,X) is the space of bounded bilinear map-
pings from X x X into R. For a cone C c X,C" = {c* € X" : (c*,c) > 0,Vc € C} is the positive polar cone of C. For A C X, intA,
clA, bdA, coneA, coA, and A(x) stand for the interior, closure, boundary, conical hull, convex hull of A and, conical hull of
the translate A + x, resp. For t > 0 and k € N, o(t¥) designates a point in a considered space (which is clear from the context)
depending on t such that o(t*)/t* — 0 as t — 0". C" is used for the space of Fréchet differentiable mappings whose Fréchet
derivative is locally Lipschitz.

Now we recall the notions of tangent cones and second-order tangent sets that we will use later. Let X be a normed space.

Definition 2.1. Let xp,u € X,Sc X and y € {0,1}.
(a) The contingent (or Bouligand) cone of S at x; is

T(S,x0) = {v € X: 3ty — 07,30, — v,Vk € N, xo + t, vy € S}.
(b) The interior tangent cone of S at xq is
IT(S, %) = {v € X :Vty — 07, Vo, — v,Vk large enough, xo + t; v, € S}.

(c) The second-order contingent set of index y of S at (xo,u) is

Ti(S,xo,u) = {w € X :3(ty, ) — (0%,0%) :%H 7y, 3wy, — w,Vk € N, Xo + tyu +%tkrkwk € S}.
k

(d) The second-order adjacent set of index ) of S at (xo,u) is

Af(S,xo,u) = {W € X :VY(ty, 1) — (07,0%) :%H Y, 3w, — w,Vk € N, xo + tpu +%tkrkwk € S}.
! k

(e) The second-order interior tangent set of index y of S at (xo, u) is

IT2(S, X, u) = {w € X :Y(ty, 1) — (07,07) : 3

1
P Y, Vw, — w, Yk large enough xo + it + = trewy € S}.
k

2

When y = 0, the sets T3(S,xo, 1), A2(S, Xo, ) and IT2(S, Xo, 1) are cones and called the asymptotic second-order contingent
cone, the asymptotic second-order adjacent cone and the asymptotic second-order interior tangent cone, resp. When y = 1,

the sets T3(S, xo, u),Af (S,x0,u) and IT3(S, xo, u) are said to be the second-order contingent set, the second-order adjacent set
and the second-order interior tangent set, resp. The cones T(S,x;) and IT(S,X,) and the sets T3(S, xo,u)7Af(S, Xo,u) and

IT3(S, xo, u) are well-known. The cones Aé(S,xm u) and T3 (S, o, u) were used by Penot [25,26]. The cone IT3(S, o, ) was intro-
duced by Giorgi et al. [10]. For a systematics survey of second-order tangent sets and their application to vector optimization,
see [10]. Note that if X, ¢ clS, then all the above tangent sets are empty.

Some basic properties of the above first-order and second-order tangent sets are listed in the following proposition.

Proposition 2.1. Let xo,u € X,S C X and y € {0,1}. Then, the following are satisfied

(i) IT%(S, X0, u) C A2(S, X0, 1) C T%(S, X0, 1) C clcone[cone(S — xo) — ul;
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