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a b s t r a c t

A variational problem closely related to the bending energy of curves contained is surfaces
of real 3-space forms is considered. We seek curves in a surface which are critical for the
elastic energy when this is weighted by the total squared normal curvature energy, under
two different sets of constraints: clamped curves and one free end curves of constant
length. We start by deriving the first variation formula and the corresponding Euler–
Lagrange equations and natural boundary conditions of these energies and characterize
critical geodesics. We show how surfaces locally foliated by critical geodesics can be found
by using the fundamental theorem of submanifolds. In order to find explicit solutions we
classify complete rotation surfaces in a real space form for which every parallel is critical.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Extending the classical Bernoulli’s model for curves in the plane, a curve c : I ! Mn, isometrically immersed in a Riemann-
ian manifold Mn, is said to be an elastica if it is a minimizer of the total squared curvature

F cð Þ ¼
Z

c
j2

g ds; ð1:1Þ

where jg denotes the geodesic curvature of c. Thus, in Euclidean ambient spaces, the total squared curvature functional can
be thought of as the bending energy of the curve and its equilibrium positions as mathematical models for thin elastic rods.
More generally, immersed curves of a Riemannian manifold which are critical (not necessarily minima) for the total squared
curvature (1.1) are usually called elastic curves or, simply, elasticae and, of course, there are different variational problems in
Riemannian manifolds associated to the various constraints and boundary conditions that can be considered.

In 1743 Euler obtained the plane elastic curves by quadratures [8], whilst the first explicit parametrizations of the Euler
elasticae were given by Saalchütz in 1880. Stability of the plane elasticae was studied by Max Born in his Ph.D. thesis (1906)
who, in addition, noticed that the slope of the elasticae satisfies the equation for the mathematical pendulum. Also at the
beginning of the 20th century, Radon [22] and Irrgang [15] analyzed the free elastic curves in R3 (i.e. with no constraint
on the length of the curve variation). In recent years, many mathematicians have shown interest on the subject again
and, in particular, the elastica problem in Riemannian manifolds has come to the attention of many geometers who have
investigated related problems using different approaches [1,5,13,14,16,17,19,20] (see also [10,11]) for recent surveys). As
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a consequence, elastica in real space forms are well known. Generalizations of the bending energy functional (1.1) to curva-
ture energy functionals involving several Frenet curvatures of the curve, have interesting applications to several fields: in
Physics to the construction of models of relativistic particles and p-branes; in Biophysics to the study of membranes and ves-
icles; and, in Mathematics to the Theory of Submanifolds, where they can be used, for instance, to construct algorithms
which provide efficient ways to obtain new examples of Chen-Willmore submanifolds (see [2,10] for more details and
references).

However, on the one hand, little is known for elasticae in non-constant curvature Riemannian manifolds and, on the other
hand, the Euler–Lagrange equations for these generalized elastic energy functionals do not appear to be tractable in general.
In order to make these problems more accessible, we consider curves which are isometrically immersed in a surface of a 3-
pace form. For these curves, in addition to the geodesic curvature (which determines the bending energy), one has another
important geometric quantity which is defined on them due to the fact that they live on the surface: the normal curvature.
According to [23], minimizers of the total squared normal curvature

R
j2

n appear to have some significance in the self-assem-
bly analysis of thin films formed by block copolymers in a cylindrical phase. The purpose of this paper is to study the
variational problem associated to the energy F ml as given in (3.1) for curves isometrically immersed in a surface of a 3-pace
form. That is, we consider the case of curves, isometrically immersed in surfaces, whose shape is controlled by the bending
energy (1.1) when this is weighted by the total squared normal curvature of the curve.

In Section 3 we consider two variational problems associated to the energy F ml for curves c contained in a surface of real
3-space form M2 � M3ðcÞ; c ¼ 0; 1; �1 . We first take variations of c by curves of M2 with the same initial point and initial
velocity, same length and arbitrary endpoint (in short, free end problem). Then, we analyze the problem for variations of
curves with clamped ends (that is, curves with prescribed zero and first order boundary data). The Euler–Lagrange equations
are easily obtained combining results in [19,4], since the total squared normal curvature is a special case of the energy con-
sidered in the latter. Moreover, the natural boundary conditions might be obtained by using techniques similar to those in
[19,4]. Rather than doing this, here we use a little trick which makes the computation shorter and characterize critical geo-
desics in both cases. In Section 4 we study the special case m ¼ l. Now, F ml is nothing but the elastic energy of the curve in

M3ðcÞ, but the curve variations are taken in the surface containing it. This problem will be referred to as the surface con-
strained problem for the elastic energy F ml. The surface constrained problem for Euclidean surfaces was first posed and studied
by Santaló, [24]. If c ¼ 0, that is for surfaces of R3, the Euler–Lagrange equations of the surface constrained elastic energy
were obtained in [24] (clamped case) and in [21] (free end case). By using a different approach, we analyze here all cases
c ¼ 0; 1; �1 simultaneously, paying special attention to umbilical surfaces. We also construct surfaces locally foliated by
critical geodesics. Finally, although geodesics of surfaces in M3ðcÞ need not be critical curves necessarily, we observe that,
as a consequence of our previous results, rotation surfaces of M3ðcÞ are locally foliated by critical meridians. In connection
with this fact, in Section 5 we classify complete rotation surfaces of M3ðcÞ for which every parallel is critical for F ml.

2. Preliminaries

Let M3ðcÞ; c 2 f�1;0g, be the simply connected space form of sectional curvature c with metric h; i, and consider an
orientable surface M2 isometrically immersed in M3ðcÞ (we assume that either M2 is orientable or that the curves under con-

sideration lie within a coordinate neighborhood). As usual, er andrwill denote the Levi–Civita connections of M3ðcÞ and M2,
respectively, and we will use R for the curvature tensor of M3ðcÞ.

Along this paper, the symbol I will be used to denote the interval ½0;1�. Let b : I! M3ðcÞ be a smooth immersed curve bðtÞ,
and denote by cðsÞ its unit speed reparametrization with unit tangent TðsÞ ¼ c0ðsÞ, where 0 denotes derivative with respect to

the arc-length parameter s. We say that bðtÞ is of rank 0 if cðsÞ is a geodesic. If c0ðsÞ and er @
@s
c0ðsÞ are everywhere linearly

independent, we will say that bðtÞ is of rank 1. In such a case the unit normal and binormal vector fields on cðsÞ are defined

by NðsÞ ¼ er @
@s
c0ðsÞ er @

@s
c0ðsÞ

��� ���.
and BðsÞ ¼ TðsÞ � NðsÞ, respectively, where � is the vector product on M3ðcÞ. Thus, fT;N;Bg

represents the usual Frenet frame on c whilst the (Frenet) curvature and torsion functions of c in M3ðcÞ fjðsÞ; sðsÞg are defined
by the following Frenet equationserT T ¼ j � N;erT N ¼ �j � T þ s � B;erT B ¼ �s � N:

ð2:1Þ

Assume now that which cðsÞ is contained in the surface M2 � M3ðcÞ and let n be a choice of the unit normal vector to M2. If
we consider the Darboux frame fT;g; ng, where g :¼ n� T . Then, we can write

N ¼ cos w � nþ sin w � g;
B ¼ sin w � n� cos w � g;

ð2:2Þ

where w is the angle which N makes with the normal to the surface n. Moreover, the geodesic curvature, the normal curvature
and the geodesic torsion of c in M2, denoted, respectively, by fjg ;jn; sgg, are defined by the following Darboux’s equations
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