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a b s t r a c t

In this paper, a system of nonlinear fractional differential equations (FDEs) are considered.
They have been solved by Legendre wavelets method combining with its operational
matrix. However, there are no articles about solving this system using wavelets method.
The main purpose of this technique is to transform the initial equations into a nonlinear
system of algebraic equations which can be solved easily. The convergence and error anal-
ysis are presented to show the correctness and feasibility of method proposed for solving
the above mentioned problem. Finally, the applicability and efficiency of the mentioned
approach are demonstrated by three numerical examples.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Fractional calculus has attracted increasing attention for decades since it plays a vital role in different disciplines of sci-
ence and engineering [1–3]. Compared to integer order differential equation, fractional differential equation has the advan-
tage that it can better describe some natural physics processes and dynamic system processes [4], because the fractional
order differential operators are non-local operators. Many physics, chemistry and engineering systems can be elegantly mod-
eled with the help of the FDEs, such as dielectric polarization [5], viscoelastic systems [6], control theory [7], chaotic behavior
[8] and electrolyte–electrolyte polarization [9], and so on.

In the past several decades, many scholars have devoted themselves to studying such systems. Matignon, Tavazoei and
Haeri investigated the stability results for linear fractional order systems in [10,11]. Daftardar-Gejji, Bonilla, Odibat et al. pro-
posed an analytic study on linear systems of FDEs, and discussed the existence and uniqueness of solutions [12–14]. But
most FDEs do not have exact solutions, so numerical and approximate techniques must be presented. Recently, numerical
solutions for some classes of fractional order systems have been constructed by many authors for example homotopy anal-
ysis method [15], variational iteration method [16], finite difference method [17,18], collocation method [19–21], Adomian
decomposition method [22,23], differential transform method [24].

Wavelets theory has been paid considerable attention from many scholars. It has been applied in a wide range of engi-
neering disciplines. The most frequently used orthogonal wavelets are Haar, Legendre, Chebyshev, the second kind of Cheby-
shev and CAS wavelets. We use this orthogonal basis for the purpose of reducing the problem under consideration to a
system of linear or nonlinear algebraic equations. The Large systems of algebraic equations may result in greater computa-
tional complexity and large storage requirements. However the operational matrix for the Legendre wavelets is structurally
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spare. This reduces the computational complexity of the resulting algebraic system. Legendre wavelets method as a specific
kind of wavelets methods has been widely applied for solving differential equations [25–29].

The main purpose of this paper is to solve the following general form of the system of FDEs [13] by Legendre wavelets:

Dai
� uiðxÞ ¼ f iðx;u1;u2; :::;unÞ; uðrÞi ð0Þ ¼ ci; 1 6 i 6 n; 0 6 r 6 daie; ð1Þ

where mi � 1 < ai 6 mi; mi 2 Zþ, Dai
� is the Caputo fractional differential operator. The existence, uniqueness and stability of

solutions of FDEs.(1) with initial values are proved in [12,13]. Many authors solved this system by using different numerical
methods [21–24]. While there are no articles about solving the system as above using wavelets method. So in this paper, we
take the method of Legendre wavelets to the numerical solutions of FDEs.(1) into consideration.

This article is organized as follows. In Section 2, we introduce the definitions of fractional calculus simply. In Section 3, we
describe the basic formulation of Legendre wavelets and their properties, and obtained the operational matrix of Legendre
wavelets through the operational of Block Pulse Functions (BPFs). Section 4, present the convergence and error analysis of
Legendre wavelets method. Section 5, Legendre wavelets method is used to the numerical solutions of three examples of
FDEs (1). Finally a conclusion is given in Section 6.

2. Preliminaries and notions

The fractional calculus is a name for the theory of integrals and derivatives of arbitrary order, which unifies and gener-
alizes the notions of integer-order differentiation and n-fold integration [29]. There are many different types of definitions of
fractional calculus. For example, the Riemann–Liouville integral operator of order a is defined by [29]:

ðIauÞðtÞ ¼
1

CðaÞ
R t

0 ðt � sÞa�1uðsÞds; a > 0; s > 0;

uðtÞ; a ¼ 0;

(
ð2Þ

and its fractional derivative of order a (a P 0) is normally used:

ðDa
�uÞðtÞ ¼

d
dt

� �n

ðIn�auÞðtÞ; a > 0; n� 1 < a 6 n: ð3Þ

In this article we adopt the Caputo’s definition, which is a modification of Riemann–Liouville definition:

ðDa
�uÞðtÞ ¼

1
Cðn�aÞ

R t
0 ðt � sÞn�a�1uðnÞðsÞds; a > 0;n� 1 < a < n;

dnuðtÞ
dtn ; a ¼ n;

8<
: ð4Þ

where n is an integer. Caputo’s integral operator has useful properties:

ðDa
� I

auÞðtÞ ¼ uðtÞ; ð5Þ

ðIaDa
�uÞðtÞ ¼ uðtÞ �

Xn�1

k¼0

uðkÞð0þÞ
k!

tk; t P 0; n� 1 < a < n: ð6Þ

In this study, the fractional derivative is understood in the Caputo sense because of its applicability to real-world
problems.

3. The Legendre wavelets and their properties

3.1. Legendre polynomial and Legendre wavelets

The well-known Legendre polynomials Ln(x) are orthogonal with respect to the weight function x(x) = 1 on the interval
[�1, 1] and satisfy the following recurrence formulae [25]:

L0 ¼ 1; L1 ¼ x; Lnþ1ðxÞ ¼
2nþ 1
nþ 1

xLnðxÞ �
n

nþ 1
Ln�1ðxÞ; n ¼ 1;2; . . . ; ð7Þ

For practical use of polynomials on the interval [0, 1], it is necessary to shift the defining domain by means of the sub-
stitution x ¼ 2t � 1 ð0 6 t 6 1Þ, so the shifted Legendre polynomial L�nðtÞ defined on [0, 1] as L�nðtÞ ¼ Lnð2t � 1Þ.

It also satisfy the orthogonality condition asZ 1

0
L�nðtÞL

�
mðtÞdt ¼ 1

2nþ 1
dn m; ð8Þ

where dn m is the Kronecker delta.
Legendre wavelets wnmðtÞ ¼ wðk; ~n;m; tÞ have four arguments, k can be assumed as any positive integer, m is the order for

Legendre polynomials and t is the normalized time. They are defined on the interval [0, 1) as:
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