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and provide computational comparisons of the new COST with existing linear program-
ming algorithms for some large-scale sample problems.
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1. Introduction
1.1. The nonnegative linear programming problem

Linear programming represents a mathematical model for solving numerous practical problems such as the optimal allo-
cation of resources. The general linear programming (LP) model [1] can be stated as the problem P

maximize z = ¢'x (1)
subject to Ax < b (2)
X >0, 3)

where X is an n-dimensional column vector of variables; A is an m x n matrix [a;] with m rows of transposed n-dimensional
column vectors af, Vi=1,...,m; b is an m-dimensional column vector; ¢ is an n-dimensional column vector; and 0 is a col-
umn vector of zeros with its dimension apparent from context. Simplex pivoting algorithms and polynomial interior-point
barrier-function methods represent the two principal solution approaches to solve problem P. Unfortunately there is no sin-
gle best algorithm. For either method, we can always formulate an instance of P for which the method performs poorly [2].
Significantly, however, binary and integer models represent the principal use of LP in industrial applications. Since interior-
point methods do not allow the efficient post-optimality analysis of pivoting algorithms in solving such problems, simplex
methods remain the dominant approach. Yet current simplex algorithms are not adequate in many situations. In particular,
emerging technologies require computer solutions in nearly real time for problems involving millions of constraints or
variables.
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In this paper we consider the special case of P witha; > 0anda; #0, Vi=1,...,m; b > 0; and ¢ > 0, where all inequal-
ities between vectors are meant componentwise. Such a version of P is called a nonnegative linear program (NNLP) and pro-
vides a model for a significant portion of industrial LP applications. Examples include updating airline schedules as weather
conditions and passenger loads change [3], finding an optimal driving route using real-time traffic data from global
positioning satellites [4], and detecting problematic repeats in DNA sequences [5]. The dual of the NNLP maximization
problem (1), (2), and (3) is considered the standard minimization NNLP problem. We focus here on the maximization case.

NNLPs have the following two useful properties. They are always feasible at the origin X = 0. Moreover, for each
j=1,....n,

b a,-j>0}.
a

X < min{ :
ij

i=1,..m

Hence NNLPs have both an unbounded feasible region and unbounded objective function if and only if some column of A is a
zero vector. Thus their boundedness is easily verifiable without computation.

1.2. An active-set framework

Our active-set framework for solving an NNLP P is described as follows. For P with a bounded feasible region as deter-
mined above, we begin with a relaxation of P. We next form an initial bounded NNLP Py by one of two methods. In the sin-
gle-bound approach Py has a single artificial bounding constraint ajx < bo in (2) with ap > 0 and b, > 0, together with the
nonnegativity constraints (3). One well-known bounding constraint has the form 1x < M for M sufficiently large enough
so as not to reduce the feasible region of P. In the multi-bound approach described in Section 2.2, the initial bounding con-
straints are selected in the same manner as later constraints. Computational results, both reported and otherwise, show little
difference in the CPU times for solving problems using these two approaches except when the solution to Py with the above
artificial bounding constraint produces a large number of alternate optima. Here the multi-bound approach is used for Py
unless otherwise stated since it also considers both the bounding and multi-cut constraint selection aspects of our method.

We solve Py and a series of relaxations P,, r = 1,2,..., of P by adding constraints from set (2) to the previous relaxation.
The constraints of P, are called its operative constraints, while the rest of the constraints (2) are called its inoperative
constraints. Since the bounding constraints and nonnegativity restrictions form a bounded region, each problem P, yields
an optimal solution Xx;. A relaxed problem P, is obtained from P, by adding one or more constraints chosen from the vio-
lated inoperative constraints of P,, i.e., a constraint afx < b; not in P for which alx} — b; > 0. These constraints are selected
according to a particular criterion such that the chosen violated inoperative constraints are considered most likely to be
binding at optimality for the original problem P. P,,; is then solved by the dual simplex algorithm. By continuing in this man-
ner, eventually a solution X! is obtained that satisfies all inoperative constraints for P, and yields a solution of P. The rationale
for any such active-set approach is that a solution to P is determined by relatively few constraints satisfied as equalities — at
most n such constraints for the n variables in constraint set (2). Therefore, the goal is to add only constraints likely to be
binding at optimality.

1.3. Background

Active-set approaches for solving P have been studied by Stone [6], Thompson et al. [7], Adler et al. [8], Zeleny [9], Myers
and Shih [10], Curet [11], and Bixby et al. [12], with the term “constraint selection technique” used in Myers and Shih [10]. In
such work, however, the only two selection criteria used for selecting an inoperative constraint violated by the solution to
the current relaxed problem were (a) to randomly select a constraint from the violated inoperative constraint and (b) to
choose an inoperative constraint most violated by the current solution. For example, method (a) was used in Adler et al.
[8], while method (b) was used in Zeleny [9] and Mitchell [13]. If Py has a bounding constraint ¢"x < M and the remaining
constraints of (2) are randomly ordered, then method (a) is called SUB in this paper because it selects the violated inoper-
ative constraint with the smallest SUBscript in (2). Similarly, method (b) is called VIOL because it selects the most VIOLated
inoperative constraint. In this paper we emphasize the comparison with SUB and VIOL since they are the active-set
approaches prevalent in the literature. In particular, VIOL is identical to the Priority Constraint Method of Thompson
et al. [7] and is a standard pricing method for adding constraints in cutting plane methods [13] and for adding variables
in delayed column generation in terms of the dual [1,12]. Bixby et al. [12] develops a pricing rule, called sifting, based upon
a scaled violation of the constraints in the dual problem. As a subroutine within a predictor-corrector interior point cutting
plane algorithm, Mitchell [13] uses a multi-cut version of the VIOL criteria to select the cutting planes.

Recent work on constraint selection has considered the angle that the normal vector a; of a constraint afx < b; in (2) forms
with the normal vector ¢ of the objective function (1) as measured by the cosine of the angle between a; and ¢ denoted by

cos (a;,¢) = H:‘Tﬁ Geometric considerations in Naylor and Sell [ 14], for example, suggest that a constraint alx < b; with a lar-
ger cosine value might more likely be binding at an optimal extreme point of P than one with a smaller value. We call this
observation the cosine criterion, which applied to the dual of P gives new pivot rules for the simplex algorithm such as the
“most-obtuse-angle” rules studied by Pan [15,16]. In addition, Trigos et al. [17] and Vieira et al. [ 18] use the cosine criterion

on P for both (2) and (3) to get an initial basis for the simplex algorithm and a reduction in the number of iterations. Corley
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