Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

On a subclass of the class of rapidly varying sequences

Dragan Djurčić^{a,1}, Nebojša Elez^b, Ljubiša D.R. Kočinac^{c,*}

^a University of Kragujevac, Faculty of Technical Sciences, 32000 Čačak, Serbia
^b University of East Sarajevo, Faculty of Philosophy, 71420 Pale, Bosnia and Herzegovina

^c University of Niš, Faculty of Sciences and Mathematics, 18000 Niš, Serbia

ARTICLE INFO

Keywords: Rapid variability $KR_{\infty,s}$ Representation theorem Selection principles

ABSTRACT

We define and study the class $\mathsf{KR}_{\infty,s}$ which is a proper subclass of the class $\mathsf{R}_{\infty,s}$ of rapidly varying sequences of index of variability ∞ . Then, we prove a theorem of the Galambos–Bojanić–Seneta type for this class, as well as a representation theorem in the Karamata sense. We also give some important asymptotic properties and characterizations of sequences in $\mathsf{KR}_{\infty,s}$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Karamata theory of regular variability (and various its generalizations and variations) is a very important part of mathematical analysis, especially of asymptotic analysis [1]. The main object of this theory is the notion of slowly varying function.

A function $g : [a, \infty) \to (0, \infty), a > 0$, is said to be *slowly varying* in the sense of Karamata [15] if it is measurable and for each $\lambda > 0$ satisfies

$$\lim_{x \to \infty} \frac{g(\lambda x)}{g(x)} = 1.$$
(1)

We denote the class of slowly varying functions by SV_f .

Another theory, conjugate with the theory of slow variability, is de Haan's theory of rapid variability. (These theories are conjugated, for example, through generalized inverse [11].)

A function $g : [a, \infty) \to (0, \infty), a > 0$, is said to be *rapidly varying* of index of variability ∞ [14] if it is measurable and for each $\lambda > 1$ satisfies

$$\lim_{x \to \infty} \frac{g(\lambda x)}{g(x)} = \infty.$$
⁽²⁾

We denote the class of rapidly varying functions by $R_{\infty,f}$.

Both theories, the theory of regular and rapid variability, have a sequential analog (see [1,3-5,7-9,20] in connection with these two theories).

A sequence $(c_n)_{n \in \mathbb{N}}$ of positive real numbers is said to be *rapidly varying* (in the sense of de Haan) of index of variability ∞ if for each $\lambda > 1$ it satisfies

* Corresponding author.

¹ Supported by MPNTR RS.

http://dx.doi.org/10.1016/j.amc.2014.11.099 0096-3003/© 2014 Elsevier Inc. All rights reserved.

E-mail addresses: dragan.djurcic@ftn.kg.ac.rs (D. Djurčić), jasnaelez@gmail.com (N. Elez), lkocinac@gmail.com (L.D.R. Kočinac).

$$\lim_{n\to\infty}\frac{c_{[\lambda n]}}{c_n}=\infty.$$

We denote the class of rapidly varying sequences by $R_{\infty,s}$ (see [3]).

In this paper we study an important subclass of the class $R_{\infty,s}$, that we denote by $KR_{\infty,s}$.

For a sequence $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ of positive real numbers the *lower Matuszewska index* $d(\mathbf{c})$ is defined as the supremum of all $d \in \mathbb{R}$ such that for each $\Lambda > 1$

$$\frac{\mathcal{C}_{[\lambda n]}}{c_n} \ge \lambda^d (1 + o(1)) \quad (n \to \infty), \tag{4}$$

holds uniformly (with respect to λ) on the segment [1, Λ] (compare with the definition of lower Matuszewska index for functions [1, p. 68]). The sequence **c** belongs to the *class* KR_{∞ s} if $d(\mathbf{c}) = \infty$.

Let us mention that in a similar way one defines the *lower Matuszewska index* d(g) of a measurable function $g : [a, \infty) \to (0, \infty)$. The class of all measurable functions whose lower Matuszewska index is ∞ is denoted by $KR_{\infty f}$. This class of functions has very important asymptotic properties (see [1] in this connection). By a result from [1] we have $KR_{\infty f} \subseteq R_{\infty f}$.

The theory of regular and rapid variability has many applications in different branches of mathematics: differential and difference equations, in particular in description of asymptotic properties of solutions of these equations, time scales theory, dynamic equations, q-calculus, probability theory, number theory and so on (see, for instance, [17-19,21]).

It is natural to expect that the class $KR_{\infty,S}$ may also have many applications. This hope is based, among other facts, on the Seneta-de Haan theorem [1, Theorem 2.4.7] which gives nice relations between classes SV_f and $KR_{\infty,f}$ under the generalized inverse. Also, there is the connection between rapidly varying functions and their cumulative maximum functions from the class $KR_{\infty,f}$ (see [1, p. 87], in particular Proposition 2.4.6).

2. Results

Theorem 2.1. For a sequence $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ of positive real numbers the following are equivalent:

(1) $c \in KR_{\infty,s}$;

(2) For each $d \in \mathbb{R}$ it holds $\liminf_{n\to\infty} \inf_{\lambda \ge 1} \frac{c_{\lfloor \lambda n \rfloor}}{\frac{1}{2d_c}} \ge 1$.

Proof. $(1) \Rightarrow (2)$ From $d(\mathbf{c}) = \infty$, it follows that for every $d \in \mathbb{R}$, every $\Lambda > 1$, and sufficiently large n we have $\frac{c_{[jn]}}{c_n} \ge \lambda^d (1 + o(1))$, where $\lambda \in [1, \Lambda]$ is an arbitrary fixed element. For the same d, λ, Λ , for sufficiently large n we have $\inf_{\lambda \in [1,\Lambda]} \frac{c_{[jn]}}{\lambda^d c_n} \ge 1 + o(1)$. In other words, for each $\varepsilon > 0$ there is $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that $\inf_{\lambda \in [1,\Lambda]} \frac{c_{[jn]}}{\lambda^d c_n} \ge 1 - \varepsilon$ for each $n \ge n_0$. Because the last inequality is true for each $\Lambda > 1$, it follows that (for the same d) for each $\lambda \ge 1$ we have $\inf_{\lambda \ge 1} \frac{c_{[jn]}}{\lambda^d c_n} \ge 1 - \varepsilon$. As ε was arbitrary (2) follows.

(2) \Rightarrow (1) Suppose that for an arbitrarily fixed $d \in \mathbb{R}$, $\liminf_{n \to \infty} \inf_{\lambda \ge 1} \frac{c_{[2n]}}{\lambda^d c_n} \ge 1$ is satisfied. Then for the same d and each $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that $\inf_{\lambda \ge 1} \frac{c_{[2n]}}{\lambda^d c_n} \ge 1 - \varepsilon$ for each $n \ge n_0$. In other words, for the same d, ε, n_0 , and for each $\lambda \ge 1$, especially for $\lambda \in [1, \Lambda], \Lambda > 1$ an arbitrary real number, it holds $\frac{c_{[2n]}}{c_n} \ge \lambda^d (1 - \varepsilon)$ for each $n \ge n_0$. This means that for each $\Lambda > 1$ we have $\frac{c_{[2n]}}{c_n} \ge \lambda^d (1 + o(1))$ uniformly with respect to $\lambda \in [1, \Lambda]$ for $n \to \infty$. Since d is arbitrary, (1) follows. \Box

The next statement is a result of the Galambos–Bojanić–Seneta type (see [1,2,6,10,12,13]).

Theorem 2.2. For a sequence $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ of positive real numbers the following are equivalent:

(1) $\mathbf{c} \in KR_{\infty,s}$; (2) The function $g(x) = c_{[x]}, x \ge 1$, belongs to the class $KR_{\infty,f}$.

Proof. (1) \Rightarrow (2) Let $\mathbf{c} = (c_n)_{n \in \mathbb{N}} \in KR_{\infty,s}$. Then by Theorem 2.1 we have $\liminf_{n \to \infty} \inf_{\lambda \ge 1} \frac{c_{|jn|}}{\lambda^d c_n} \ge 1$ for each $d \in \mathbb{R}$. This means that for the same d and each $\varepsilon > 0$ there is $n_0 = n_0(d, \varepsilon) \in \mathbb{N}$ such that $\inf_{\lambda \ge 1} \frac{c_{|jn|}}{\lambda^d c_{|j|}} \ge 1 - \varepsilon$ for each $x \ge n_0$ (≥ 1). Therefore, for the same d, ε, n_0 it is true

$$\inf_{\lambda \ge 1} \frac{c_{[\lambda x]}}{\lambda^d c_{[x]}} = \inf_{\lambda \ge 1} \frac{c_{[\frac{x}{|x|},\lambda]}}{\lambda^d c_{[x]}} \ge \inf_{\lambda \ge 1} \frac{c_{[[x],\lambda]}}{\lambda^d c_{[x]}} \ge 1 - \varepsilon,$$

i.e. (for this d)

$$\liminf_{x\to\infty}\inf_{\lambda\geq 1}\frac{c_{[\lambda x]}}{\lambda^d c_{[x]}}\geq 1.$$

(3)

Download English Version:

https://daneshyari.com/en/article/4627031

Download Persian Version:

https://daneshyari.com/article/4627031

Daneshyari.com