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1. Introduction

Karamata theory of regular variability (and various its generalizations and variations) is a very important part of math-
ematical analysis, especially of asymptotic analysis [1]. The main object of this theory is the notion of slowly varying
function.

A function g : [a,00) — (0,00),a > 0, is said to be slowly varying in the sense of Karamata [15] if it is measurable and for
each 1 > 0 satisfies

[im&) _ 1, ()
x=2 g(X)
We denote the class of slowly varying functions by SV;.

Another theory, conjugate with the theory of slow variability, is de Haan’s theory of rapid variability. (These theories are
conjugated, for example, through generalized inverse [11].)

A function g : [a,00) — (0,00),a > 0, is said to be rapidly varying of index of variability oo [14] if it is measurable and for
each 1 > 1 satisfies

lim &%) _ 0. 2)

x=x g(X)
We denote the class of rapidly varying functions by R..
Both theories, the theory of regular and rapid variability, have a sequential analog (see [1,3-5,7-9,20] in connection with
these two theories).
A sequence (¢;),.y Of positive real numbers is said to be rapidly varying (in the sense of de Haan) of index of variability co
if for each 4 > 1 it satisfies
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. Cp
lim 22 = . 3)
n—oo Cp
We denote the class of rapidly varying sequences by R, (see [3]).
In this paper we study an important subclass of the class R, s, that we denote by KR..
For a sequence ¢ = (cy,),., Of positive real numbers the lower Matuszewska index d(c) is defined as the supremum of all
d € R such that for each A > 1
Com

c > 241 +40(1) (n— o), (4)

holds uniformly (with respect to 1) on the segment [1, A] (compare with the definition of lower Matuszewska index for func-
tions [1, p. 68]). The sequence ¢ belongs to the class KR, s if d(c) = co.

Let us mention that in a similar way one defines the lower Matuszewska index d(g) of a measurable function
g:[a,00) — (0,00). The class of all measurable functions whose lower Matuszewska index is oo is denoted by KR, . This class
of functions has very important asymptotic properties (see [1] in this connection). By a result from [1] we have KR, sSR..;.

The theory of regular and rapid variability has many applications in different branches of mathematics: differential and
difference equations, in particular in description of asymptotic properties of solutions of these equations, time scales theory,
dynamic equations, g-calculus, probability theory, number theory and so on (see, for instance, [17-19,21]).

It is natural to expect that the class KR, s may also have many applications. This hope is based, among other facts, on the
Seneta-de Haan theorem [1, Theorem 2.4.7] which gives nice relations between classes SV and KR, under the generalized
inverse. Also, there is the connection between rapidly varying functions and their cumulative maximum functions from the
class KR, (see [1, p. 87], in particular Proposition 2.4.6).

2. Results

Theorem 2.1. For a sequence ¢ = (Cp),y Of positive real numbers the following are equivalent:

(1) c € KRy

(2) For each d € R it holds liminf,_.inf;-; 22 > 1.

/c,.

Proof. ( )= (2) From d(c) = oo, it follows that for every d e R, every A >1, and sufficiently large n we have
c[ . ( o(1)), where / € [1,A] is an arbitrary fixed element. For the same d, 4, A, for sufﬁciently large n we have
1nf/€1,\ > 1+o0(1). In other words, for each &> 0 there is ny =ng(¢) € N such that mf/&],\ > 1—¢ for each

n > ng. Because the last inequality is true for each A > 1, it follows that (for the same d) for each 4= 1 we have
inf;- fg*;’] > 1 —&. As ¢ was arbitrary (2) follows.

(2) = (1) Suppose that for an arbitrarily fixed d € R, liminf,_.inf;>q < e =1 is satisfied. Then for the same d and each
& > 0 there exists ng = ng(¢) € N such that inf;,. >1-¢foreachn > no In other words, for the same d, ¢, ng, and for

each / > 1, especially for 2 € [1,A],A > 1an arbltrary real number, it holds C[C—n”] > 7%(1 — &) for each n > ny. This means that

L > ,9(1 + 0(1)) uniformly with respect to 4 € [1, A] for n — cc. Since d is arbitrary, (1) follows. O

The next statement is a result of the Galambos-Bojani¢-Seneta type (see [1,2,6,10,12,13]).
Theorem 2.2. For a sequence ¢ = (Cp),y Of positive real numbers the following are equivalent:

(1) € € KRy
(2) The function g(x) = ciy,x > 1, belongs to the class KR .

Proof. (1) = (2) Let ¢ = (Cy),y € KRw,s. Then by Theorem 2.1 we have liminf,_inf;; fg,_; > 1 for each d € R. This means
that for the same d and each ¢ > O there is no = no(d, ¢) € N such that 1nf,>1 U > 1 — gforeachx > ng (= 1). Therefore, for
€

the same d, g, ng it is true

Cixl _

inf =/
=1 AdC[ X

i.e. (for this d)

e e . Cyy.
liminfinf 2L > 1.

X—oo =1 ) Cix
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