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a b s t r a c t

We discuss a number of novel steplength selection schemes for proximal-based convex
optimization algorithms. In particular, we consider the problem where the Lipschitz con-
stant of the gradient of the smooth part of the objective function is unknown. We general-
ize two optimization algorithms of Khobotov type and prove convergence. We also take
into account possible inaccurate computation of the proximal operator of the non-smooth
part of the objective function. Secondly, we show convergence of an iterative algorithm
with Armijo-type steplength rule, and discuss its use with an approximate computation
of the proximal operator. Numerical experiments show the efficiency of the methods in
comparison to some existing schemes.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the problem of minimizing the sum of two given functions

min
x2RN

FðxÞ � f ðxÞ þ gðxÞ; ð1Þ

where f : RN�!R is a convex, continuously differentiable function and g : RN�!�R is an extended-value convex function, pos-
sibly including constraints on the unknown.

The minimization problem (1) has been handled by several algorithms especially tailored to deal with a non-differentia-
ble function g. In particular, numerical schemes known in the literature as proximal gradient methods have earned a great
popularity in the last years. They find a very general applicability in problems concerning with large or high-dimensional
datasets from several scientific areas, like compressed sensing, machine learning and signal processing (see for example
[1–4]).

In this paper we discuss new techniques to select the steplength in the proximal gradient methods, without the assump-
tion of knowing the Lipschitz constant of the gradient of the smooth part of the objective function. We start our analysis from
two approaches developed in the constrained differentiable optimization context: the Khobotov extra-gradient method [5,6]
and the gradient projection method along the feasible directions [7]. Due to the non-smooth term g in the function (1), a
possible generalization of these algorithms has to account for the presence of the proximal operator of this term instead
of a projection onto a suitable set.

We study several extensions of constrained optimization algorithms of Khobotov type. In particular, we propose an exten-
sion of Khobotov’s original scheme [5] to the more general proximal case. We prove convergence, even when the proximal
operators cannot be computed exactly. We also consider the saddle-point formulation for the minimization problem (1). The
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so-called Alternating Extragradient Method (AEM) [8] is a variant of Khobotov’s method for constrained smooth saddle-point
problems. We propose a generalization of the AEM algorithm for a general (not necessarily smooth) saddle-point problem.
This extension is again achieved through the use of the proximal operator of the non-smooth part of the objective function.
Again, none of these algorithms require any knowledge of the Lipschitz constant of the gradient of the smooth part of the
objective function. Such a problem is also recently discussed in [9].

Secondly, and following the basic idea behind the gradient projection methods, we suggest an iterative proximal algo-
rithm that exploits an Armijo-type steplength selection rule similar to [10]. A proof of convergence of the algorithm is pro-
vided. We also explore its use in case only an approximation for the required proximal operator is available.

Finally, in order to evaluate the effectiveness of the presented methods, we conduct a numerical study on some signal
recovering test problems that can be modeled by Eq. (1): the performance of the discussed schemes is assessed through a
comparison with some algorithms already known in the literature and designed to solve this type of problems.

Several problems arising from real-world applications [11–13] can be formalized through the mathematical model intro-
duced in Eq. (1): the applications of this work will be focused on one-dimensional and two-dimensional signal restoration
problems with data perturbed by Poisson noise [14–16]. Signal and image restoration consist in recovering an approximation
of an object detected by an acquisition system, starting from the data provided by the instrument and a model representing
the distortion occurring during the acquisition process itself. More precisely, the signal formation process is an inverse prob-
lem that can be formalized through a linear system g ¼ Hxþ bþ g where g 2 RM is the observed data, x 2 RN represents an
ideal, undistorted object to be recovered, H 2 RM�N is a typically ill-conditioned matrix describing the acquisition instrument
effect, b 2 RM expresses a non-negative constant background radiation and g 2 RM is the noise corrupting the data. In this
paper we will work under the hypothesis of having non-negative signals, therefore we will take into account this type of
constraint in the problem formulation. In the Bayesian approach [17,18], the approximated restored signal is found by solv-
ing the following optimization problem

min
xP0

J0ðxÞ þ lJRðxÞ; ð2Þ

where J0 : RN�!R is a continuously differentiable function measuring the distance between the model and the data,
JR : RN�!R is a regularization term adding a priori information on the solution and l is a positive parameter balancing
the role of the two objective function components J0 and JR. When the data are affected by Poisson noise, the so-called Kull-
back–Leibler divergence is used to describe J0:

J0ðxÞ ¼ KLðxÞ ¼
XN

i¼1

gi ln
gi

ðHxþ bÞi
þ ðHxþ bÞi � gi

� �
ð3Þ

with gi lnðgiÞ ¼ 0 if gi ¼ 0. As for the regularization term, we will consider properly chosen functionals that enforce a priori
information depending on the features of the problem.

2. Mathematical tools

This section recalls some useful definitions and properties on proximal operators and describes a well-known proximal
gradient method. For a more complete discussion of proximal operator methods we refer the reader to [4,3,19,20]. In the
following we consider convex function that are proper (nowhere equal to �1 and not identically equal to þ1) and lower
semi-continuous.

2.1. Proximal operators

The proximal operator proxh : RN�!RN of a convex function h : RN�!�R is defined as:

proxhðuÞ ¼ argmin
x2RN

1
2
kx� uk2 þ hðxÞ:

We remark that if h is convex and closed then proxhðuÞ exists and is unique for all u 2 RN .

Lemma 1. [Subgradient characterization] Let h : RN�!�R be an extended-value function. The following characterization for the
proximal operator of h holds true: x ¼ proxhðuÞ if and only if u� x 2 @hðxÞ if and only if hðzÞP hðxÞ þ hu� x; z � xi; 8z 2 RN.

Proof. See [3]. h

Remark 1. From Lemma 1 and by setting w ¼ u� x, it follows that w 2 @hðxÞiff x ¼ proxhðxþwÞ.

Remark 2. The minimizer x̂ of problem (1) is characterized by the inclusion 0 2 rf ðx̂Þ þ @gðx̂Þ, or equivalently by the rela-
tions arf ðx̂Þ þw ¼ 0 and w 2 @agðx̂Þ with a > 0. Using Remark 1, these can be rewritten as the single condition
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