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Asymptotic series

1. Introduction

The Wallis ratio is defined as
W 7(2n—1)!!7LF(n+1/2)
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where I is the classical Euler gamma function which may be defined by
Iz = / wletdu, 9R(z) > 0. (1.1)
0

The study and applications of W, have a long history, a large amount of literature, and a lot of new results. For detailed infor-
mation, please refer to the papers [1,4,18,19,22], related texts in the survey articles [17,20,21] and references cited therein.
Recently, Guo, Xu, and Qi proved in [5] that the double inequality
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for n > 2 is valid and sharp in the sense that the constants /%, and 4 in (1.2) are best possible. They also proposed in [5] the
approximation formula
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The sharpness of the double inequality (1.2) was proved in [5] basing on the variation of a function which decreases on
[2,00) from £ to /2. As a consequence, the right-hand side of (1.2) becomes weak for large values of n. Moreover, if we are

interested to estimating W, when n approaches infinity, then the constant /2 should be chosen and inequalities using ,/,
are welcome.
The aim of this paper is to improve the double inequality (1.2) and the approximation formula (1.3).

2. A lemma
For improving the double inequality (1.2) and the approximation formula (1.3), we need the following lemma.
Lemma 2.1 [12, Lemma 1.1]. If the sequence {wy : n € N} converges to 0 and
limn*(w, — wp1) =L € R, (2.1)
n—oo

for k > 1, then

limn*'w, = o (2.2)
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Remark 2.1. Lemma 2.1 was first established in [15] and has been effectively applied in many papers such as [2,3,6-
11,13,14,16].

3. A best approximation formula
With the help of Lemma 2.1, we first provide a best approximation formula of the Wallis ratio W,,.

Theorem 3.1. The approximation formula
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is the best approximation of the form
n
W, ~ E(l—l) vREa (32)
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where a is a real parameter.

Proof. Define z,(a) by

W, \[<1——> ”n+ expza(@), n = 1.

It is not difficult to see that z,(a) — 0 as n — oco. A direct computation gives
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and
lim {1f(@) - 201 (@]} — 2.

Making use of Lemma 2.1, we immediately see that the sequence {z,(a) : n € N} converges fastest only when a = 0. The
proof of Theorem 3.1 is complete. O

Remark 3.1. The approximation formula (3.1) is an improvement of (1.3), since the approximation formula (1.3) is the spe-
cial case a = —1 in (3.2).

4. An asymptotic series associated to (3.1)

In this section, by discovering an asymptotic series and a single-sided inequality for the Wallis ratio, we further generalize
the approximation formula (3.1) and improve the left-hand side of the double inequality (1.2).
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