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a b s t r a c t

In the paper, the authors establish some best approximation formulas and inequalities for
the Wallis ratio. These formulas and inequalities improve an approximation formula and a
double inequality for the Wallis ratio presented in 2013 by three mathematicians.
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1. Introduction

The Wallis ratio is defined as

Wn ¼
ð2n� 1Þ!!
ð2nÞ!! ¼ 1ffiffiffiffi

p
p C nþ 1=2ð Þ

Cðnþ 1Þ ;

where C is the classical Euler gamma function which may be defined by

CðzÞ ¼
Z 1

0
uz�1e�udu; RðzÞ > 0: ð1:1Þ

The study and applications of Wn have a long history, a large amount of literature, and a lot of new results. For detailed infor-
mation, please refer to the papers [1,4,18,19,22], related texts in the survey articles [17,20,21] and references cited therein.
Recently, Guo, Xu, and Qi proved in [5] that the double inequalityffiffiffiffi
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for n � 2 is valid and sharp in the sense that the constants
ffiffiffi
e
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p
, and 4

3 in (1.2) are best possible. They also proposed in [5] the
approximation formula
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The sharpness of the double inequality (1.2) was proved in [5] basing on the variation of a function which decreases on
½2;1Þ from 4

3 to
ffiffiffi
e
p

p
. As a consequence, the right-hand side of (1.2) becomes weak for large values of n. Moreover, if we are

interested to estimating Wn when n approaches infinity, then the constant
ffiffiffi
e
p

p
should be chosen and inequalities using

ffiffiffi
e
p

p
,

are welcome.
The aim of this paper is to improve the double inequality (1.2) and the approximation formula (1.3).

2. A lemma

For improving the double inequality (1.2) and the approximation formula (1.3), we need the following lemma.

Lemma 2.1 [12, Lemma 1.1]. If the sequence fxn : n 2 Ng converges to 0 and

lim
n!1

nkðxn �xnþ1Þ ¼ ‘ 2 R; ð2:1Þ

for k > 1, then
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‘

k� 1
: ð2:2Þ

Remark 2.1. Lemma 2.1 was first established in [15] and has been effectively applied in many papers such as [2,3,6–
11,13,14,16].

3. A best approximation formula

With the help of Lemma 2.1, we first provide a best approximation formula of the Wallis ratio Wn.

Theorem 3.1. The approximation formula
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is the best approximation of the form
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where a is a real parameter.

Proof. Define znðaÞ by
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It is not difficult to see that znðaÞ ! 0 as n!1. A direct computation gives
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Making use of Lemma 2.1, we immediately see that the sequence fznðaÞ : n 2 Ng converges fastest only when a ¼ 0. The
proof of Theorem 3.1 is complete. h

Remark 3.1. The approximation formula (3.1) is an improvement of (1.3), since the approximation formula (1.3) is the spe-
cial case a ¼ �1 in (3.2).

4. An asymptotic series associated to (3.1)

In this section, by discovering an asymptotic series and a single-sided inequality for the Wallis ratio, we further generalize
the approximation formula (3.1) and improve the left-hand side of the double inequality (1.2).
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