Some best approximation formulas and inequalities for the Wallis ratio

Feng $\mathrm{Qi}^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$, Cristinel Mortici ${ }^{\mathrm{d}, \mathrm{e}, *}$
${ }^{\text {a }}$ Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
${ }^{\mathrm{b}}$ College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region 028043, China
${ }^{\text {c }}$ Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province 454010, China
${ }^{\text {d }}$ Department of Mathematics, Valahia University of Târgovişte, Bd. Unirii 18, 130082 Târgovişte, Romania
${ }^{\mathrm{e}}$ Academy of Romanian Scientists, Splaiul Independenţei 54, 050094 Bucharest, Romania

ARTICLE INFO

Keywords:

Wallis ratio
Best approximation formula
Double inequality
Asymptotic series

ABSTRACT

In the paper, the authors establish some best approximation formulas and inequalities for the Wallis ratio. These formulas and inequalities improve an approximation formula and a double inequality for the Wallis ratio presented in 2013 by three mathematicians.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Wallis ratio is defined as

$$
W_{n}=\frac{(2 n-1)!!}{(2 n)!!}=\frac{1}{\sqrt{\pi}} \frac{\Gamma(n+1 / 2)}{\Gamma(n+1)}
$$

where Γ is the classical Euler gamma function which may be defined by

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} u^{z-1} e^{-u} \mathrm{~d} u, \quad \mathfrak{R}(z)>0 \tag{1.1}
\end{equation*}
$$

The study and applications of W_{n} have a long history, a large amount of literature, and a lot of new results. For detailed information, please refer to the papers [1,4,18,19,22], related texts in the survey articles [17,20,21] and references cited therein. Recently, Guo, Xu, and Qi proved in [5] that the double inequality

$$
\begin{equation*}
\sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{\sqrt{n-1}}{n}<W_{n} \leqslant \frac{4}{3}\left(1-\frac{1}{2 n}\right)^{n} \frac{\sqrt{n-1}}{n} \tag{1.2}
\end{equation*}
$$

for $n \geq 2$ is valid and sharp in the sense that the constants $\sqrt{\frac{e}{\pi}}$, and $\frac{4}{3}$ in (1.2) are best possible. They also proposed in [5] the approximation formula

$$
\begin{equation*}
W_{n} \sim \chi_{n}:=\sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{\sqrt{n-1}}{n}, \quad n \rightarrow \infty . \tag{1.3}
\end{equation*}
$$

[^0]The sharpness of the double inequality (1.2) was proved in [5] basing on the variation of a function which decreases on $[2, \infty)$ from $\frac{4}{3}$ to $\sqrt{\frac{e}{\pi}}$. As a consequence, the right-hand side of (1.2) becomes weak for large values of n. Moreover, if we are interested to estimating W_{n} when n approaches infinity, then the constant $\sqrt{\frac{e}{\pi}}$ should be chosen and inequalities using $\sqrt{\frac{e}{\pi}}$, are welcome.

The aim of this paper is to improve the double inequality (1.2) and the approximation formula (1.3).

2. A lemma

For improving the double inequality (1.2) and the approximation formula (1.3), we need the following lemma.
Lemma 2.1 [12, Lemma 1.1]. If the sequence $\left\{\omega_{n}: n \in \mathbb{N}\right\}$ converges to 0 and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k}\left(\omega_{n}-\omega_{n+1}\right)=\ell \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

for $k>1$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k-1} \omega_{n}=\frac{\ell}{k-1} \tag{2.2}
\end{equation*}
$$

Remark 2.1. Lemma 2.1 was first established in [15] and has been effectively applied in many papers such as [2,3,611,13,14,16].

3. A best approximation formula

With the help of Lemma 2.1, we first provide a best approximation formula of the Wallis ratio W_{n}.
Theorem 3.1. The approximation formula

$$
\begin{equation*}
W_{n} \sim \sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{1}{\sqrt{n}}, \quad n \rightarrow \infty \tag{3.1}
\end{equation*}
$$

is the best approximation of the form

$$
\begin{equation*}
W_{n} \sim \sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{\sqrt{n+a}}{n}, \quad n \rightarrow \infty \tag{3.2}
\end{equation*}
$$

where a is a real parameter.

Proof. Define $z_{n}(a)$ by

$$
W_{n}=\sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{\sqrt{n+a}}{n} \exp z_{n}(a), \quad n \geqslant 1
$$

It is not difficult to see that $z_{n}(a) \rightarrow 0$ as $n \rightarrow \infty$. A direct computation gives

$$
z_{n}(a)-z_{n+1}(a)=-\frac{a}{2 n^{2}}+\left(\frac{1}{2} a+\frac{1}{2} a^{2}+\frac{1}{12}\right) \frac{1}{n^{3}}+O\left(\frac{1}{n^{4}}\right)
$$

and

$$
\lim _{n \rightarrow \infty}\left\{n^{2}\left[z_{n}(a)-z_{n+1}(a)\right]\right\}=-\frac{a}{2}
$$

Making use of Lemma 2.1, we immediately see that the sequence $\left\{z_{n}(a): n \in \mathbb{N}\right\}$ converges fastest only when $a=0$. The proof of Theorem 3.1 is complete.

Remark 3.1. The approximation formula (3.1) is an improvement of (1.3), since the approximation formula (1.3) is the special case $a=-1$ in (3.2).

4. An asymptotic series associated to (3.1)

In this section, by discovering an asymptotic series and a single-sided inequality for the Wallis ratio, we further generalize the approximation formula (3.1) and improve the left-hand side of the double inequality (1.2).

https://daneshyari.com/en/article/4627071

Download Persian Version:
https://daneshyari.com/article/4627071

Daneshyari.com

[^0]: * Corresponding author currently at: Department of Mathematics, Valahia University of Târgovişte, Bd. Unirii 18, 130082 Târgovişte, Romania.

 E-mail addresses: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com (F. Qi), cristinel.mortici@hotmail.com (C. Mortici). URLs: http://qifeng618.wordpress.com (F. Qi), http://www.cristinelmortici.ro (C. Mortici).

