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a b s t r a c t

This study examines the notion of generators of a pairwise comparisons matrix. Such
approach decreases the number of pairwise comparisons from n � ðn� 1Þ to n� 1. An algo-
rithm of reconstructing of the PC matrix from its set of generators is presented.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In [17], Thurstone proposed ‘‘The Law of Comparative Judgments’’ for pairwise comparisons (for short, PC). However, the
first use of pairwise comparisons is in [5]). Even earlier use of PC is published in [3], but in a more simplified way for voting
(win or loss). The PC theory finds a lot of applications, for example, in transport. An integrated simulation, multivariate
analysis and multiple decision analysis for railway system improvement and optimization is presented in [1] where data
envelopment analysis is used to solve the multi-objective model to identify the best alternatives.

In many cases, we meet the incomplete PC matrices which should be completed in such a way that they become
consistent. The authors of [4] deal with this problem by means of similarity and parametric compromise functions. In
[15], a fitness function is defined as a scalar vector function composed of the common error measure, based on the Euclidean
distance, and a minimum violation error that accounts for no violation of the rank ordering is considered to improve deriving
of the weights.

In this study, we examine the possibility of reconstructing the entire n� n PC matrix from only n� 1 given entries placed
in strategic locations. We call them PC-generators. Before we progress, some terminologies of pairwise comparisons must be
revisited in the next section, since PC theory is still not as popular as other mathematical theories. However, the next section
is definitely not for PC method experts.

2. Pairwise comparisons basics

We define an n� n pairwise comparison matrix simply as a square matrix M ¼ ½mij� such that mij > 0 for every i; j ¼ 1; . . . ;n.
A pairwise comparison matrix M is called reciprocal if mij ¼ 1

mji
for every i; j ¼ 1; . . . ;n (then automatically mii ¼ 1 for every

i ¼ 1; . . . ;n). Let us assume that:
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where mij expresses a relative quantity, intensity, or preference of entity (or stimuli) Ei over Ej. A more compact and elegant
specification of PC matrix is given in [14] by Kulakowski.

A pairwise comparison matrix M is called consistent (or transitive) if:

mij �mjk ¼ mik;

for every i; j; k ¼ 1;2; . . . ;n.
We will refer to it as a ‘‘consistency condition’’. Consistent PC matrices correspond to the situation with the exact values

lðE1Þ; . . . ;lðEnÞ for all the entities. In such case, the quotients mij ¼ lðEiÞ=lðEjÞ then form a consistent PC matrix. The vector
s ¼ ½lðE1Þ; . . .lðEnÞ� is unique up to a multiplicative constant. While every consistent matrix is reciprocal, the converse is
generally false. If the consistency condition does not hold, the matrix is inconsistent (or intransitive). Axiomatization of incon-
sistency indicators for pairwise comparisons has been recently proposed in [13] and various inconsistency indexes are ana-
lyzed in [2].

The challenge for the pairwise comparisons method comes from the lack of consistency of the pairwise comparisons
matrices, which arises in practice (while as a rule, all the pairwise comparisons matrices are reciprocal). Given an N � N
matrix M, which is not consistent, the theory attempts to provide a consistent n� n matrix M0, which differs from matrix
M ‘‘as little as possible’’.

It is worth to note that the matrix: M ¼ ½v i=v j� is consistent for all (even random) positive values v i. It is an important
observation since it implies that a problem of approximation is really a problem of a norm selection and the distance min-
imization. For the Euclidean norm, the vector of geometric means (equal to the principal eigenvector for the transitive
matrix) is the one which generates it. Needless to say that only optimization methods can approximate the given matrix
for the assumed norm (e.g., LSM for the Euclidean distance, as recently proposed in [7]). Such type of matrices are examined
in [16] as ‘‘error-free’’ matrices.

It is unfortunate that the singular form ‘‘comparison’’ is sometimes used considering that a minimum of three compar-
isons are needed for the method to have a practical meaning. Comparing two entities (stimuli or properties) in pairs is
irreducible, since having one entity compared with itself gives trivially 1. Comparing only two entities (2� 2 PC matrix) does
not involve inconsistency. Entities and/or their properties are often called stimuli in the PC research but are rarely used in
applications.

3. The PC-generators of pairwise comparisons matrix

For a given PC matrix A 2 Mn�nðRÞ consider the set Cn :¼ faij : i < jg. Note that in order to reconstruct the whole
consistent matrix it is enough to know the elements of Cn, as aii ¼ 1 for each i 2 f1; . . . ;ng and aji ¼ 1

aij
for i < j.

Let us call each such set sufficient to reconstruct the matrix A its set of PC-generators.
The set Cn has n2�n

2 elements. However, consistency is a much stronger condition. So, it is obvious that we may reduce this
input set by computing the rest of elements. It is a natural question to ask which minimal subsets of Cn generate A.

Remark 3.1. If B � B0 � Cn and B generates A, then B0 does as well.

Theorem 3.2. There is no ðn� 2Þ-set of PC-generators of A.

Proof. For n ¼ 3 the statement is obvious, as in any matrix:
1 a c
1
a 1 b
1
c

1
b 1

2
4

3
5:

if we only know one of the values a; b or c, we cannot clearly calculate the other two satisfying c ¼ ab.
To continue the induction, let us assume that the assertion holds for each matrix M 2 Mn�nðRÞ. Now consider the matrix:
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