Oscillation theorems for linear matrix Hamiltonian systems ${ }^{2}$

CrossMark

Jing Shao ${ }^{\text {a,b,* }}$, Fanwei Meng ${ }^{\text {b }}$, Zhaowen Zheng ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Jining University, Qufu 273155, Shandong, PR China
${ }^{\mathrm{b}}$ School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, PR China

A R T I CLE IN F O

Keywords:

Linear Hamiltonian system
Oscillation
Matrix linear transformation

Abstract

Using a matrix linear transformation which preserves oscillatory property, some new oscillation criteria for the following linear matrix Hamiltonian system $$
\begin{aligned} U^{\prime} & =(A(t)-\lambda(t) I) U+B(t) V \\ V^{\prime} & =C(t) U+\left(\mu(t) I-A^{*}(t)\right) V, \quad t \geqslant t_{0} \end{aligned}
$$ are obtained, which improve and generalize some recent results in literature. © 2014 Elsevier Inc. All rights reserved.

1. Introduction

Hamiltonian matrix differential systems arise in many dynamic problems and have been studied by many authors (e.g., see $[1-19,30]$ and the references cited therein). In this paper, we consider oscillatory properties for the linear Hamiltonian matrix differential system

$$
\left\{\begin{array}{l}
U^{\prime}=(A(t)-\lambda(t) I) U+B(t) V \tag{1.1}\\
V^{\prime}=C(t) U+\left(\mu(t) I-A^{*}(t)\right) V
\end{array}\right.
$$

where $A(t), B(t), C(t)$ are $n \times n$ matrices of real continuous matrix-valued functions on the interval $\left[t_{0}, \infty\right), B(t)=B^{*}(t), C(t)=C^{*}(t)$, here and in the sequel, the transpose of a matrix M is denoted by M^{*} and for any symmetric matrix M, by $M>0$, it means M is positive definite. $B(t)$ is either positive definite or negative definite, $\mu(t), \lambda(t)$ are real valued continuous function on $\left[t_{0}, \infty\right)$. When $\lambda(t)=\mu(t) \equiv 0$, system (1.1) reduces to the following Hamiltonian system

$$
\left\{\begin{array}{l}
U^{\prime}=A(t) U+B(t) V \tag{1.2}\\
V^{\prime}=C(t) U-A^{*}(t) V
\end{array}\right.
$$

A solution $(U(t), V(t))$ of the system (1.1) (or (1.2)) is said to be nontrivial if $\operatorname{det} U(t) \neq 0$ for at least one $t \in\left[t_{0}, \infty\right)$. A nontrivial solution $(U(t), V(t))$ of (1.1) (or (1.2)) is said to be prepared or self-conjugate if $U^{*}(t) V(t)-V^{*}(t) U(t) \equiv 0, t \geqslant t_{0}$. System (1.1) (or (1.2)) is said to be oscillatory on $\left[t_{0}, \infty\right)$ if there is a nontrivial prepared solution $(U(t), V(t))$ of (1.1) (or (1.2)) such that $\operatorname{det} U(t)$ vanishes at least once on $[T, \infty)$ for each $T \geqslant t_{0}$. Otherwise, it is said to be nonoscillatory.

When $A(t) \equiv 0$, system (1.2) reduces to the second order self-adjoint matrix differential system

$$
\begin{equation*}
\left(P(t) Y^{\prime}\right)^{\prime}+Q(t) Y=0, \quad t \geqslant t_{0} \tag{1.3}
\end{equation*}
$$

[^0]with $P(t)=B^{-1}(t), Q(t)=-C(t)$. Oscillation and non-oscillation of system (1.3) and its special case
\[

$$
\begin{equation*}
Y^{\prime \prime}+Q(t) Y=0, \quad t \geqslant t_{0} \tag{1.4}
\end{equation*}
$$

\]

have been extensively studied by many authors (see [3,4,17,18,21,22,25-29] and references contained therein). Many of these criteria involve the integral of the coefficients modeled on either the criteria due to Wintner [23] or Kamenev [24] for the scalar equation. The Hamiltonian system (1.2) has also been investigated by many authors (see [5-20] for details). Most of these oscillation criteria involve the fundamental matrix $\Phi(t)$ for the linear system $v^{\prime}=A(t) v$. Such a system cannot be solved easily when $A(t)$ is a continuous function of t. Moreover, by using the following transformation

$$
\binom{\bar{U}}{\bar{V}}=\left(\begin{array}{cc}
\Phi^{-1}(t) & 0 \tag{1.5}\\
0 & \Phi^{*}(t)
\end{array}\right)\binom{U}{V},
$$

we can transform (1.2) into the following Hamiltonian system

$$
\left\{\begin{array}{l}
\bar{U}^{\prime}=\Phi^{*}(t) B(t) \Phi(t) \bar{V}, \tag{1.6}\\
\bar{V}^{\prime}=\Phi^{-1}(t) C(t) \Phi^{*-1}(t) \bar{U}, \quad t \geqslant t_{0} .
\end{array}\right.
$$

We can easily rewrite (1.6) in the form (1.3) with $P(t)=\Phi^{-1}(t) B^{-1}(t) \Phi^{*-1}(t), Q(t)=-\Phi^{-1}(t) C(t) \Phi^{*-1}(t)$. So those criteria are similar to that of system (1.3). Oscillation criteria without the fundamental matrix $\Phi(t)$ of the linear system $v^{\prime}=A(t) v$ for system (1.2) are fewer. By using a Kummer transformation, the author in [14] gave Kamenev type oscillation criterion for system (1.2) without the fundamental matrix $\Phi(t)$ as follows:

Theorem 1.1. Suppose that there exist $a(t) \in C^{1}\left(\left[t_{0}, \infty\right) ; \mathbb{R}^{+}\right)$and $f(t)=-\frac{a^{\prime}(t)}{2 a(t)}$ such that $f B^{-1}$ is differentiable. If there exists $H \in \mathcal{H}$ such that

$$
\limsup _{t \rightarrow \infty} \frac{1}{H\left(t, t_{0}\right)} \lambda_{1}\left\{\int_{t_{0}}^{t} M(t, s) \mathrm{d} s\right\}=\infty
$$

where \mathcal{H} is defined in Section 2 and

$$
\begin{aligned}
& M(t, s)=H(t, s) D(s)-h(t, s) \sqrt{H(t, s)} K(s)-\frac{1}{4} h^{2}(t, s) \bar{B}^{-1}(s) \\
& K(t)=\frac{1}{2}\left(A^{*}(\bar{B})^{-1}+(\bar{B})^{-1} A\right)(t), \quad D(t)=\left(-\bar{C}-A^{*}(\bar{B})^{-1} A\right)(t) \\
& \bar{B}(t)=a^{-1}(t) B(t), \quad \bar{C}(t)=a(t)\left\{C+f\left(A^{*} B^{-1}+B^{-1} A\right)-f^{2} B^{-1}+\left(f B^{-1}\right)^{\prime}\right\}(t) .
\end{aligned}
$$

Then system (1.2) is oscillatory.
Moreover, paper [14] gave the oscillation criterion of Philos type for system (1.2) as follows.
Theorem 1.2. Suppose that there exist $a(t) \in C^{1}\left(\left[t_{0}, \infty\right) ; \mathbb{R}^{+}\right)$, and $f(t)=-\frac{a^{\prime}(t)}{2 a(t)}$ such that $f B^{-1}$ is differentiable. There exists $H \in \mathcal{H}$ such that

$$
\begin{align*}
0< & \inf _{s \geqslant t_{0}}\left\{\liminf _{t \rightarrow \infty} \frac{H(t, s)}{H\left(t, t_{0}\right)}\right\} \leqslant \infty, \tag{1.7}\\
& \liminf _{t \rightarrow \infty} \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t}[H(t, s) \operatorname{trD}(s)-h(t, s) \sqrt{H(t, s)} \operatorname{tr} K(s)] d s>-\infty, \\
& \limsup _{t \rightarrow \infty} \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} \frac{a(s) h^{2}(t, s)}{\lambda_{n}(B(s))} d s<\infty .
\end{align*}
$$

Moreover, there exists another function $\psi(t) \in C\left(\left[t_{0}, \infty\right) ; \mathbb{R}\right)$ such that

$$
\limsup _{t \rightarrow \infty} \frac{1}{H(t, T)} \lambda_{1}\left\{\int_{T}^{t}\left[H(t, s) D(s)-h(t, s) \sqrt{H(t, s)} K(s)-\frac{1}{4} a(s) h^{2}(t, s) B^{-1}(s)\right] d s\right\} \geqslant \psi(T)
$$

for all $T \geqslant t_{0}$. Then system (1.2) is oscillatory provided

$$
\int_{t_{0}}^{\infty} \frac{\lambda_{n}(B(s))}{a(s)}\left[\psi(s)+\lambda_{n}(\bar{K}(s))\right]_{+}^{2} d s=\infty
$$

where $D(t)$ and $K(t)$ are the same as in Theorem 1.1.
Using positive linear functional on \mathcal{M} (where \mathcal{M} is defined in Section 2), Li et al. [5] obtained improved Philos type oscillation criteria for system (1.2).

https://daneshyari.com/en/article/4627076

Download Persian Version:
https://daneshyari.com/article/4627076

Daneshyari.com

[^0]: This research was partially supported by the NSF of China (Grant 11171178 and 11271225) and Science and Technology Project of High Schools of Shandong Province (Grant J12LI52).

 * Corresponding author at: Department of Mathematics, Jining University, Qufu 273155, Shandong, PR China.

 E-mail address: shaojing99500@163.com (J. Shao).

