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a b s t r a c t

Solid fuel ignition models, for which the dynamics of the temperature is independent of the
single-species mass fraction, attempt to follow the dynamics of an explosive event. Such
models may take the form of singular, degenerate, reaction–diffusion equations of the
quenching type, that is, the temporal derivative blows up in finite time while the solution
remains bounded. Theoretical and numerical investigations have proved difficult for even
the simplest of geometries and mathematical degeneracies. Quenching domains are known
to exist for piecewise smooth boundaries, but often lack theoretical estimates. Rectangular
geometries have been primarily studied. Here, this acquired knowledge is utilized to deter-
mine new theoretical estimates to quenching domains for arbitrary piecewise, smooth,
connected geometries. Elliptical domains are of primary interest and a Peaceman–Rachford
splitting algorithm is then developed that employs temporal adaptation and nonuniform
grids. Rigorous numerical analysis ensures numerical solution monotonicity, positivity,
and linear stability of the proposed algorithm. Simulation experiments are provided to
illustrate the accomplishments.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Nonlinear evolution equations that form a singularity in finite time are ubiquitous in nature. Applications are broad
appearing in models from chemistry, physics, biology, rocket, and combustion engineering. Solid fuel ignition models
attempt to approximate an explosive event, identified as the rate of change of the temperature increasing without bound
and forming a singularity in finite time. The formation of the singularity equates to ignition in the combustor. Moreover,
the finite time ignition is triggered if the temperature reaches a critical threshold. The sophistication of combustion models
can be reduced considerably if one examines asymptotically close to the ignition time. In such cases, the equation for the
temperature decouples from the chemistry and mass-species fraction [5,19]. The final result is a highly nonlinear differential
equation, in particular,

sðx; yÞut ¼ Duþ f ðuÞ; t > 0; ðx; y; tÞ 2 X� ð0; TÞ; ð1Þ
uðx; y;0Þ ¼ u0ðx; yÞ; ðx; yÞ 2 X; ð2Þ

where X 2 R2, Dirichlet boundary conditions specified on the boundary @X, and 0 6 u0ðx; yÞ < 1 for ðx; yÞ 2 X. The source
term, f ðuÞ, is a highly nonlinear function. It is positive and strictly increasing for 0 6 u < 1. Most importantly, it tends to
infinity when u! 1�. The degeneracy function sðx; yÞP 0 and models particular heat transportation characteristics within
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the domain. While it remains positive within the domain it may vanish or become singular on a countable subset of points on
the boundary. If the degeneracy function vanishes this is seen as a defect in the transportation of heat, while if it becomes
singular it is a defect in the diffusion of heat. In either case, the degeneracy indicates a defect at a particular location of the
combustor or, common to combustion engine designs, a special material concentration point [2,14,19].

A sufficient condition for the singularity to form in the temporal derivative is that u! 1� as t ! T� <1 in ~X # X
[24]. In such cases, the solution u is said to quench at the quenching time T over the domain X. The set ~X is called
the quenching location set, and in this study involves a single point in the domain. On one hand, given an initial condition
and domain shape there is no guarantee that the solution will quench. One the other hand, it is known that for a piece-
wise smooth and connected domain there does exists a critical size for which the solution will always quench for all
sizes larger [10]. This was originally observed and proven in the one-dimensional case by Kawarada [13] for a particular
f ðuÞ, and then was extended to general source terms by Levine and Montgomery [15]. In higher dimensions, the results
are not nearly as precise and finding estimates to the critical size that quenching persists for a particular shape is prob-
lematic. Fortunately, there are known theoretical estimates for rectangular domains [9]. Numerical approximations have
been employed to extend and resolve these estimates further [2,17]. In this paper, stemming from the creation of lower
and upper bound solutions to the singular problem, theoretical estimates of the critical quenching domain are estab-
lished in Section 2 for arbitrary domains. This provides an avenue of creating novel estimates for arbitrary domains,
in particular when the domain shape is convex and will be used to provide additional verification of the numerical algo-
rithm in the experiments of Section 6.

This paper is also interested in the development and analysis of an adaptive splitting algorithm that can accurately be
used to explore the singular problem posed over an elliptical domain. To date, numerical explorations have primarily focused
on rectangular domains while circular and elliptical geometries may be more applicable to realistic applications. In addition,
the analysis of Section 2 provides valuable estimates to the critical quenching domains and are used to further validate the
numerical scheme in the experiments of Section 6. Moreover, the intricate numerical methodologies, such as splitting, adap-
tation, and nonuniform grids requires extensions to such geometric considerations. Indeed, after careful design, the numer-
ical analysis shows that the numerical scheme is indeed reliable, accurate, monotonically increases toward a steady state or
quenching, and is weakly stable.

The paper is organized as follows. In the following section theoretical estimates for quenching domains for piecewise
smooth, connected domains are given. It is evident that these results can be extended to blow-up problems. In addition,
as a corollary to the theorems, quenching time estimates can be established for arbitrary domain shapes and sizes. In Sec-
tion 3 the study begins its focus on elliptical domains. The equations are then written in elliptical coordinates. Hence, the
computation is designed over the rectangular grid generated by the coordinate transformation. Appropriate boundary con-
ditions are then established. In Section 4 the adaptive, second order, splitting algorithm is given. The numerical analysis of
the algorithm is in Section 5. In Section 6 numerous numerical experiments are offered, namely a statistical analysis of intro-
duced errors, critical quenching domain calculations for elliptical domains of certain ratios of minor to major axes, and
experimentally studying the effect of the mathematical degeneracy on the solution’s fundamental characteristics. The paper
is then concluded in Section 7.

2. Theoretical estimates of quenching domains

For singular, reaction–diffusion equations of the quenching type one of most interesting features is the existence of a crit-
ical quenching domain size for a particular domain shape. As one might expect, showing that this is indeed the case for arbi-
trary domains is a difficult task, especially in higher dimensions. Recently, in [10], it has been shown that for connected
piecewise smooth domains there exists a critical quenching domain size. In realistic domain shapes, this novel result indi-
cates this phenomena will persist, however, theoretical estimates of the critical size are lacking. Even so, reliable theoretical
estimates have been established for rectangular domains. These estimates have been verified numerically in a number of
resources [2,11,17].

The use of upper and lower solutions to differential equations has a long history in analysis of blow-up problems [1]. The
fundamental idea can be traced back to [22]. Consider the solution uðx; y; tÞ of (1) and (2).

Let wðx; y; tÞ be a time-dependent lower bound of uðx; y; tÞ. Then if wðx; y; tÞ ! 1 in finite time T then the quenching sin-
gularity forms in uðx; y; tÞ at a quenching time of T� 6 T . Therefore, if one can establish a time-dependent lower bound of u
that approaches a value of one in finite time then u will quench. Similarly, let vðx; y; tÞ be a time-dependent upper bound of
uðx; y; tÞ. Then if vðx; y; tÞ < 1 for all time then clearly uðx; y; tÞ will not quench.

Definition 1. A lower solution of (1) and (2) is a function vðx; y; tÞ that satisfies

v t 6 Dv þ f ðvÞ; ðx; yÞ 2 X; t > 0;
v 6 0; ðx; yÞ 2 @X; t > 0;

v 6 0; ðx; yÞ 2 �X; t ¼ 0:
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