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a b s t r a c t

George and Elmahdy (2012), considered an iterative method which converges quadrati-
cally to the unique solution xd

a of the method of Lavrentiev regularization, i.e.,
FðxÞ þ aðx� x0Þ ¼ yd, approximating the solution x̂ of the ill-posed problem FðxÞ ¼ y where
F : DðFÞ# X�!X is a nonlinear monotone operator defined on a real Hilbert space X. The
convergence analysis of the method was based on a majorizing sequence. In this paper
we are concerned with the problem of expanding the applicability of the method consid-
ered by George and Elmahdy (2012) by weakening the restrictive conditions imposed on
the radius of the convergence ball and also by weakening the popular Lipschitz-type
hypotheses considered in earlier studies such as George and Elmahdy (2012), Mahale
and Nair (2009), Mathe and Perverzev (2003), Nair and Ravishankar (2008), Semenova
(2010) and Tautanhahn (2002). We show that the adaptive scheme considered by Perver-
zev and Schock (2005) for choosing the regularization parameter can be effectively used
here for obtaining order optimal error estimate. In the concluding section the method is
applied to numerical solution of the inverse gravimetry problem.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a real Hilbert space with inner product h:; :i and norm k:k. Let BrðxÞ and BrðxÞ, stand respectively, for the open and
closed ball in X with center x 2 X and radius r > 0. In this paper, we are interested in obtaining a stable approximate solution
for a nonlinear ill-posed operator equation of the form

FðxÞ ¼ y; ð1:1Þ

where F : DðFÞ# X ! X is a nonlinear monotone operator. Note that F is a monotone operator if it satisfies the relation
hFðuÞ � FðvÞ; u� viP 0 for all u; v 2 DðFÞ.

It is assumed that (1.1) has a solution, say x̂, and F is Fréchet differentiable for all x 2 DðFÞ. Further, we assume that yd 2 X
are the available noisy data with

ky� ydk 6 d: ð1:2Þ

http://dx.doi.org/10.1016/j.amc.2014.12.090
0096-3003/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: jidesh@nitk.ac.in (P. Jidesh), shubhavorkady@gmail.com (V.S. Shubha), sgeorge@nitk.ac.in (S. George).

Applied Mathematics and Computation 254 (2015) 148–156

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.12.090&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.12.090
mailto:jidesh@nitk.ac.in
mailto:shubhavorkady@gmail.com
mailto:sgeorge@nitk.ac.in
http://dx.doi.org/10.1016/j.amc.2014.12.090
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


Since (1.1) is ill-posed, its solution need not depend continuously on the data, i.e., small perturbation in the data can cause
large deviation in the solution. So, one has to use regularization method [3–7,9–21]. Since F is monotone, one may use the
Lavrentiev regularization method [6,7,9]. In this method the regularized approximation xd

a is obtained by solving the
operator equation

FðxÞ þ aðx� x0Þ ¼ yd: ð1:3Þ

It is known (cf. [21, Theorem 1.1]) that (1.3) has unique solution xd
a for a P 0, provided F is Fréchet differentiable and

monotone in the ball Brðx̂Þ � DðFÞ with radius r ¼ kx̂� x0k þ d
a (in Section 2 we prove that (1.3) has a unique solution for

all x 2 Brðx0Þ under some assumption on the Fréchet derivative of F). However the regularized Eq. (1.3) remains nonlinear
and one may have difficulties in solving it numerically.

In [8], George and Elmahdy considered the method defined iteratively by

xd
nþ1;a ¼ xd

n;a � ðF
0ðxd

n;aÞ þ aIÞ�1
Fðxd

n;aÞ � yd þ aðxd
n;a � x0Þ

h i
; ð1:4Þ

where x0 :¼ xd
0;a is the starting point of the iteration for approximately solving (1.3). They proved that xd

n;a converges quadrat-
ically to xd

a. The convergence analysis in [8], was based on a majorizing sequence and the conditions (see (2.10) and (2.11) in
[8]) required for the convergence of the method are not easy to verify. This is the main drawback of the analysis in [8]. The
convergence analysis in [8] was carried out using the following assumptions.

Assumption 1.1. There exists r > 0 such that Brðx0Þ [ Brðx̂Þ � DðFÞ and F is Fréchet differentiable at all x 2 Brðx0Þ [ Brðx̂Þ.

Assumption 1.2. There exists a constant K0 > 0 such that for every u; v 2 Brðx0Þ [ Brðx̂Þ and w 2 X, there exists an element
/ðu;v ;wÞ 2 X satisfying ½F 0ðuÞ � F 0ðvÞ�w ¼ F 0ðvÞ/ðu;v ;wÞ; k/ðu;v ;wÞk 6 K0kwkku� vk.

Assumption 1.3. There exists a continuous and strictly increasing function u : ð0; a� ! ð0;1Þ with a P kF 0ðx̂Þk satisfying;

(i) limk!0uðkÞ ¼ 0,
(ii) supkP0

auðkÞ
kþa 6 cuuðaÞ 8k 2 ð0; a� and

(iii) there exists v 2 X with kvk 6 1 such that

x0 � x̂ ¼ uðF 0ðx̂ÞÞv:

In the present paper, we replace Assumption 1.3 by

Assumption 1.4. There exists a continuous and strictly increasing function u : ð0; a� ! ð0;1Þ with a P kF 0ðx0Þk satisfying;

(i) limk!0uðkÞ ¼ 0,
(ii) supkP0

auðkÞ
kþa 6 uðaÞ 8k 2 ð0; a� and

(iii) there exists v 2 X with kvk 6 1 such that

x0 � x̂ ¼ uðF 0ðx0ÞÞv :

In Section 3 we replace Assumption 1.2 by

Assumption 1.5. Suppose there exists a constant K0 > 0 such that for all w 2 X and u; v 2 Brðx0Þ# DðFÞ, there exists element
/ðu;v ;wÞ 2 X such that ½F 0ðuÞ � F 0ðvÞ�w ¼ F 0ðvÞ/ðu;v ;wÞ and k/ðu;v ;wÞk 6 K0kwkku� vk.

Remark 1.6. If Assumption 1.5 is fulfilled only for all u; v 2 Brðx0Þ \ Q – ;, where Q is a convex closed a priori set for which
x̂ 2 Q , then we can modify the method (1.4) in the following way:

xd
nþ1;a ¼ PQ ðTðxd

n;aÞÞ

to obtain the same estimate in Theorem 3.1. Here PQ is the metric projection onto the set Q and T is the step operator in the
method (1.4).

Using the above assumption, we prove that the method (1.4) converges quadratically to the solution xd
a of (1.3).

Recall that, a sequence ðxnÞ is said to be converging quadratically to x�, if there exists a positive number Mq, not neces-
sarily less than 1, such that

kxnþ1 � x�k 6 Mqkxn � x�k2
;

for all n sufficiently large. And the convergence of ðxnÞ to x�, is said to be linear if there exists a positive number M0 2 ð0;1Þ,
such that
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