
On the real-rootedness of generalized Touchard polynomials

Chak-On Chow a, Toufik Mansour b,⇑
a Division of Science and Technology, BNU-HKBU United International College, Zhuhai 519085, PR China
b Department of Mathematics, University of Haifa, 3498838 Haifa, Israel

a r t i c l e i n f o

Keywords:
Generalized Touchard polynomials
Real-rootedness
Interlacing
Alternating

a b s t r a c t

We consider the real-rootedness of generalized Touchard polynomials recently revisited by
Mansour and Schork (2013). Towards this end, we first describe the normal form of the
generalized Touchard polynomials, by which recurrence relations for the polynomial part
are derived. By using the recurrence relations, we prove the real-rootedness of the general-

ized Touchard polynomials for the parameter m 2 ½1;1Þ [ k
kþ1 : k 2 N
n o

.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Jacques Touchard [17,18] introduced in 1933 the Touchard polynomials TnðxÞ’s, in the study of permutations with cycles
satisfying certain conditions, as extensions of the partial Bell polynomials [1]. The Touchard polynomials TnðxÞ’s (also known
as the exponential polynomial or Bell polynomial) can either be defined by the exponential generating function
P

nP0TnðxÞ tn

n!
¼ exðet�1Þ or by the Stirling transform TnðxÞ ¼

Pn
j¼0Sn;jxj, where Sn;j ¼ 1

j!

Pj
‘¼0ð�1Þj�‘ j

‘

� �
‘n denotes the Stirling

number of the second kind, which counts the number of partitions of an n-set into j non-empty blocks (see [12]).
It is well known that the moments of the Poisson distribution are intimately related to the combinatorics of Stirling num-

bers of the second kind and Bell numbers. More precisely, if the random variable X � PoissonðkÞ, then for n ¼ 1;2; . . ., the
Touchard polynomial TnðxÞ satisfies the relation

TnðkÞ ¼ E½Xn�;

i.e., TnðkÞ is the nth moment of X. Moreover, several properties of Touchard polynomials are studied in [3,5,10,18], where
some of them are applied to problems in random walks.

Touchard polynomials have been extended in many contexts, see [4,5,10,14–16] for instance. Of relevance to the present
work is the higher order extension of Touchard polynomials introduced by Dattoli et al. [7], defined for m 2 Z;n 2 N by

TðmÞn ðxÞ :¼ e�x xm@xð Þnex; ð1:1Þ

which reduce when m ¼ 1 to the classical Touchard polynomials TnðxÞ mentioned above. Dattoli et al. [7] discussed several
properties of these polynomials, including the recurrence (1.2) below for m 2 N (also, see [11]). Mansour and Schork [13]
recently revisited TðmÞn ðxÞ by extending m to arbitrary real number and showed various properties of TðmÞn ðxÞ’s, including
the following recurrence relation
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xm þ xm@xð ÞTðmÞn ðxÞ ¼ TðmÞnþ1ðxÞ ð1:2Þ

as well as an identity relating T
1
2ð Þ

n ðxÞ and the nth Hermite polynomial HnðxÞ. See (4.1) in Section 4. Since HnðxÞ possesses the

remarkable property of being real-rooted, this suggests that T
1
2ð Þ

n ðxÞ enjoys this remarkable property also. A crucial property

of T
1
2ð Þ

n ðxÞ not explored by Mansour and Schork is the representation T
1
2ð Þ

n ðxÞ ¼ xan ~T
1
2ð Þ

n ðxÞ, where an 2 0; 1
2

� �
and

~T
1
2ð Þ

n 2 Qþ½x�. Since the real-rootedness of T
1
2ð Þ

n ðxÞ implies that of ~T
1
2ð Þ

n ðxÞ, an application of the Aissen–Schoenberg–Whitney

theorem [2, Theorem 2.2.4] to ~T
1
2ð Þ

n ðxÞ ¼
Pd

i¼0aixi then yields the total positivity consequence that any minor of the infinite

matrix M ¼ ðMijÞi;j2N defined by Mij ¼ aj�i for all i; j 2 N (where ak ¼ 0 if k < 0 or k > d ¼ deg ~T
1
2ð Þ

n ðxÞ) is non-negative. Because

of these, it is of considerable interest to study more generally the real-rootedness of T ðmÞn ðxÞ for m 2 R. The organization of
this paper is as follows. In the next section, we consider the positive integral m case. In Section 3, we consider the negative
integral m case. In Section 4, we study how the positive integral m case extends to give the positive real m case.

2. The positive integer case

We study in the present section the real-rootedness of TðmÞn ðxÞ for m 2 N.
Let m 2 N. One can compute T ðmÞn ðxÞ either directly by (1.1), or by the recurrence (1.2). The first few members are listed as

follows:

TðmÞ1 ðxÞ ¼ xm;

TðmÞ2 ðxÞ ¼ x2m�1ðxþmÞ;
TðmÞ3 ðxÞ ¼ x3m�2½x2 þ 3mxþmð2m� 1Þ�;
TðmÞ4 ðxÞ ¼ x4m�3½x3 þ 6mx2 þmð11m� 4Þxþmð2m� 1Þð3m� 2Þ�;
TðmÞ5 ðxÞ ¼ x5m�4½x4 þ 10mx3 þ 5mð7m� 2Þx2 þ 5mð2m� 1Þð5m� 2Þxþmð2m� 1Þð3m� 2Þð4m� 3Þ�:

We see that when m 2 N, all coefficients of TðmÞn ðxÞ are positive integral.

Proposition 1. For any positive integers m and k; TðmÞk ðxÞ is a monic polynomial of degree km with non-negative integer
coefficients.

Proof. We fix the positive integer m and proceed by induction on k. Since

TðmÞ1 ðxÞ ¼ e�xðxm@xÞex ¼ xm;

the theorem clearly holds when k ¼ 1. Assume that the result holds up to k. By the recurrence relation

TðmÞkþ1ðxÞ ¼ ðx
m þ xm@xÞTðmÞk ðxÞ ¼ xmT ðmÞk ðxÞ þ xmðTðmÞk Þ

0
ðxÞ;

which is a monic polynomial of degree mþ km ¼ ðkþ 1Þm. h

It is evident from the above list that

TðmÞn ðxÞ ¼ xnm�nþ1~TðmÞn ðxÞ ð2:1Þ

for some monic polynomial ~T ðmÞn 2 N½x� with ~TðmÞn ð0Þ > 0. We shall show that a sufficient condition for the coefficients of
~T ðmÞn ðxÞ to be positive integral for all n is that m 2 N.

Proposition 2. For n 2 N, the Touchard polynomial ~TðmÞn ðxÞ is monic, and satisfies the recurrence relation

~TðmÞnþ1ðxÞ ¼ ðxþ nðm� 1Þ þ 1Þ~TðmÞn ðxÞ þ x ~TðmÞn

� �0
ðxÞ: ð2:2Þ

If m 2 N, then ~TðmÞn 2 N½x�.

Proof. Substituting (2.1) into (1.2), we have

xðnþ1Þm�n~TðmÞnþ1ðxÞ ¼ ðxm þ xm@xÞxnm�nþ1 ~TðmÞn ðxÞ ¼ xðnþ1Þm�n½ðxþ nm� nþ 1Þ~TðmÞn ðxÞ þ xð~TðmÞn Þ
0ðxÞ�:

Cancelling xðnþ1Þm�n from both sides, (2.2) follows. The multiplicative factor xþ nm� nþ 1 has positive coefficients
() m > 1� 1

n. Thus, for m 2 N, the latter condition holds and both factors on the right side of (2.2) have positive integral

coefficients; ~T ðmÞn 2 N½x� then follows by induction. h
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