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a b s t r a c t

In this article, we consider third and fourth order of accuracy stable difference schemes for
the approximate solutions of hyperbolic multipoint nonlocal boundary value problem in a
Hilbert space H with self-adjoint positive definite operator A. We present stability
estimates and numerical analysis for the solutions of the difference schemes using finite
difference method.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Hyperbolic partial differential equations (PDEs) with nonlocal boundary conditions play an important role in several areas
such as engineering and natural sciences, in particular acoustic, electromagnetic, hydrodynamic, elasticity, fluid mechanics,
and other areas of physics (see, e.g., [1–5] and the references given therein). In the development of numerical methods sta-
bility has been studied by many scientists (see [5–28] and the references given therein).

In this paper, third and fourth order of accuracy difference schemes for the approximate solution of multipoint nonlocal
boundary-value problem
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for the multidimensional hyperbolic equation with Dirichlet condition is considered. Here X be the unit open cube in the
m-dimensional Euclidean space Rm x ¼ ðx1; . . . ; xmÞ : 0 < xj < 1; 1 6 j 6 m

� �
with boundary S; �X ¼ X [ S. The stability

estimates for solutions of the difference schemes are presented. Some results of numerical experiments supporting our
theoretical statements are obtained.
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Note that many scientists have been studied on the solutions of boundary value problems such as parabolic equations,
elliptic equations and equations of mixed types extensively (see, e.g., [17–28] and the references therein).

2. Stability estimates

In this section we will present stability estimates for the solutions of third and fourth order of accuracy difference
schemes. In the first step, let us define the grid sets
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respectively. The difference operator Ax
h by the formula
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acting in the space of grid functions uhðxÞ, satisfying the conditions uhðxÞ ¼ 0 for all x 2 Sh is considered. It is known
that Ax

h is a self-adjoint positive definite operator in L2ð~XhÞ. With the help of Ax
h we arrive at the nonlocal boundary value

problem
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for an infinite system of ordinary differential equations.
In the second step, we replace problem (3) by the following third order of accuracy difference scheme
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