
Thermoelastic interaction in a thermally conducting cubic
crystal subjected to ramp-type heating

Ibrahim A. Abbas a,b,⇑, Rajneesh Kumar c, Leena Rani d

a Department of Mathematics, Faculty of Science and Arts – Khulais, King Abdulaziz University, Jeddah, Saudi Arabia
b Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt
c Department of Mathematics, Kurukshetra University, Kurukshetra 136119, Haryana, India
d Department of Mathematics,GD Goenka World Institute, Sohna Road, Gurgaon, Haryana, India

a r t i c l e i n f o

Keywords:
Generalized thermoelasticity
Cubic crystal
Relaxation times
Ramp type heating
Finite element method

a b s t r a c t

In this paper, the thermoelastic interactions in a homogeneous, thermally conducting cubic
crystal, elastic half-plane has been studied. A linear temperature ramping function is used
to more realistically model. The general solution obtained is applied to a specific problem
of a half space subjected to ramp-type heating. The components of displacement, stresses,
and temperature distribution are obtained by applying a numerical finite element method.
Some particular cases are also discussed in the context of the problem. The comparison in
Lord and Shulman (LS), Green and Lindsay (GL) and Green and Naghdi (GN) theories have
been shown graphically to estimate the effect of ramping parameter of heating for isother-
mal boundary.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The generalized theories of thermoelasticity have been developed to overcome the infinite propagation speed of thermal
signal predicted by classical theory of thermoelasticity Biot [1]. There are two generalizations of the classical theory of
thermoelasticity. The first generalization was proposed by Lord and Shulman [2] and is known as L–S theory, which involve
one relaxation time for a thermoelastic process. The second generalization is due to Green and Lindsay [3] and is known as
G–L theory that takes into account two parameters in relaxation time. Dhaliwal and Sherief [4] extended the generalized
theory of thermoelasticity (LS) to anisotropic media. Banerjee and Pao [5] investigated the propagation of plane harmonic
waves in homogenous anisotropic thermoelastic solids. Sharma and Singh [6] investigated the propagation of generalized
thermoelastic waves in cubic crystals. Li [7] developed the generalized theory of thermoelasticity for an anisotropic medium.

Green and Naghdi [8–10] proposed three models, which are subsequently referred to as GN-I, II, III models. The linearized
version of model-I correspond to classical thermoelastic model. In model-II the internal rate of production of entropy is taken
to be identically zero implying no dissipation of thermal energy. This model admits undamped thermoelastic waves in a
thermoelastic material and is known as thermoelasticity without energy dissipation. Model –III includes the previous two
models as special cases and admits dissipation of energy.

Tzou [11] proposed a dual phase-lag heat conduction model to incorporate the effect of microscopic interactions in the
fast transient process of heat transport mechanism in a macroscopic formulation. Two different phase–lags (one for the heat
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flux vector and the other for the temperature gradient) have been introduced in the constitutive relation between heat flux
vector and the temperature gradient. Thermoelasticity theory corresponding to dual-phase-lag heat conduction was
proposed by Chandrasekharaiah [12].

Youssef [13] discussed problem of generalized thermoelastic infinite medium with cylindrical cavity subjected to a
ramp-type heating. Youssef and El-Bary [14] used the state space approach to study the problem of thermoelastic infinite layer
subjected to ramp-type thermal and mechanical loads. Ezzat and Youssef [15] studied the problem of state space approach for
conducting magneto-thermoelastic medium with variable electrical and thermal conductivity subjected to ramp-type heating.

The finite element method is a powerful technique originally developed for numerical solution of complex problem in
structural mechanics, and it remains the method of choice for complex system. A further benefit of this method is that it
allows physical effects to be visualized and quantified regardless of experimental limitations.

Tay [16] studied the effect of thermoelastic coupling in the determination of transient temperature fields in composite
layer by using finite element analysis. Yi and Matin [17] developed a finite element formulation for solving the problem
related to thermoelastic damping in beam resonator systems. Abbas and Youssef [18] proposed a general finite element
model to analyze transient phenomena in two temperature thermoelastic solids. Othman and Abbas [19] used the finite ele-
ment method to study the effect of rotation on plane waves at the free surface of a fiber-reinforced thermoelastic half-space.
Zad et al. [20] studied the behavior of thermoelastic waves at the interface of a layered medium by using finite element
method. Kumar et al. [21] investigated plane deformation due to thermal source in fraction order thermoelastic media.
Sheikholeslami et al. [22] studied the effects of heat transfer in flow of nanofluids.

The present investigation is to determine the components of displacements, stresses and temperature distribution in a
homogenous, thermally conducting cubic crystal, elastic half-space due to ramp-type heating. Problem investigated here
has practical utility in the field of engineering, fiber–wound composites and laminated composite materials.

2. Formulation of the problem

We consider a homogenous, thermally conducting cubic crystal, elastic half-space in the undeformed state at uniform
temperature T0. The rectangular Cartesian coordinate system ðx; y; zÞ having origin on the plane surface x ¼ 0 with x-axis
pointing vertically into medium is introduced. For two-dimensional problem (xz-plane), all the quantities depend only on
space coordinates x, z and time t. The boundary of the half-space is assumed to be affected by ramp-type heating. We take,
the displacement vector~u ¼ ðu;0;wÞ and temperature Tðx; z; tÞ, then the field equations and constitutive relations for such a
medium can be written, by following the equations given in a general form (see Green and Lindsay [3] and Dhaliwal and
Sherief [4]) as
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where b ¼ c11 þ 2c12ð Þa; here cij are the isothermal elastic parameters, q is the density, ce is the specific heat at constant
strain and s0, s1 are the thermal relaxation times, a the coefficient of thermal expansion, K is the coefficient of thermal con-
ductivity, u and w are the displacement components along x and z directions respectively, t is time, T is temperature, tzx and
tzz are stress components, The thermal relaxation times s0 and s1satisfy the inequality s1 P s0 P 0 for the G–L theory only.
The field equations of thermally conducting cubic crystal for three different generalizations take the form as

(i) Lord–Shulman (L–S) theory, s1 = 0, s0 > 0, n⁄ = n0 = n1 = 1, the Eqs. (1)–(3) take the form as
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