
Linear long wave propagation over discontinuous submerged
shallow water topography

Ravi Shankar a, Yan Sheng b, Megan Golbek c, Tucker Hartland a, Peter Gerrodette a,
Sergei Fomin a,⇑, Vladimir Chugunov d

a Department of Mathematics, CSU Chico, Chico, CA, United States
b Department of Mathematics, Emory University, Atlanta, GA, United States
c Department of Mathematics, CSU Monterey Bay, Seaside, CA, United States
d Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia

a r t i c l e i n f o

Keywords:
Linear shallow-water equations
Discontinuous submerged topography
Finite-differences
Wave reflection and transmission

a b s t r a c t

The dynamics of an isolated long wave passing over underwater obstacles are discussed in
this paper within the framework of linear shallow water theory. Areas of practical applica-
tion include coastal defense against tsunami inundation, harbor protection and erosion
prevention with submerged breakwaters, and the construction and design of artificial reefs
to use for recreational surfing. Three sea-floor configurations are considered: an underwa-
ter shelf, a flat sea-floor with a single obstacle, and a series of obstacles. A piecewise con-
tinuous coefficient is used to model the various sea-floor topographies. A simple and easily
implementable numerical scheme using explicit finite difference methods is developed to
solve the discontinuous partial differential equations. The numerical solutions are verified
with the exact analytical solutions of linear wave propagation over an underwater shelf.
The scope of this simplified approach is determined by comparison of its results to those
of another numerical solution and wave transmission and reflection coefficients from
experimental data available in the literature. The efficacy of approximating more
complicated continuous underwater topographies by piecewise constant distributions is
determined. As an application, a series of underwater obstacles is implemented.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The study of water waves over variable underwater topography has numerous practical applications. Underwater reefs
are built for several purposes including the generation of ideal waves for recreational surfing, protection from harbor damage
and beach erosion, and the defense against destructive tsunami waves. Tsunamis are formed by rapid displacement of large
masses of water, typically due to underwater earthquakes or volcanic activity [1,13]. As a tsunami wave approaches the shal-
low shorelines near a beach from deep water, its amplitude increases and its wavefront steepens; this is one source of its
destructive potential. Studying the relationship between shallow water topography and the amplification of long waves that
travel shore-wards can help us construct models that accurately predict the effects of tsunamis near coastal zones. These
models can help us assess the efficacy of man-made structures in dampening the waves’ destructive effects.
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For the purposes of evaluating breakwaters, the barriers’ reflection and transmission coefficients are of fundamental
importance. Lamb [12] first obtained the reflection and transmission amplitudes for a long wave incident at an underwater
shelf. To extend Lamb’s result to more realistic situations, many analytical solutions and numerical methods have since been
developed. Analytical solutions have been obtained for piecewise linear topographies [2,10,16] and internal waves [21].
Various numerical approaches have used the eigenfunction expansion method for sinusoidal topographies [3], a series of
obstacles [4], and permeable structures [17,18], Boussinesq equations [9,19,20], Boundary Element Method [5], nonlinear
shallow-water equations [11], and Reynolds equations [15]. These methods, while having the advantage of giving accurate
results when compared with experiments, are complicated to implement for a general type of wave profile. To solve more
accurate equations such as the Reynolds equations for mean turbulent flow, much more complicated numerical solvers are
needed. Even the analytical solutions obtained for linear flow would require multiple integral transforms and special
functions to apply to tsunami-type isolated long waves. In practical applications, a coastal engineer, for example, only
requires rough quantitative estimates to design effective breakwaters [24]. The loss in accuracy incurred by the study of
simpler equations can be well compensated by the accessibility in implementation and the ease of obtaining results.

In this study, a numerical method is developed that can be easily implemented while also giving quantitative agreement
with experimental data. The one-dimensional linear shallow water equations over discontinuous submerged topography are
solved with finite difference methods. The problem of the discontinuous boundary conditions is approached with two types
of solutions: introducing extra boundary conditions or applying a characteristic decomposition. The numerical solution is
extended to a general case of arbitrary piecewise constant underwater topography. For special cases of an underwater shelf
and obstacle, the numerical solution is compared with analytical solutions and reflection/transmission coefficients obtained
experimentally and numerically available in the literature. Experimental data for a triangular underwater obstacle are com-
pared with the numerical solution for a piecewise constant approximation to the triangular obstacle. The numerical solution
is then applied to the approximation of more complicated underwater topographies (a series of obstacles and a submerged
slope).

1.1. Governing equations

We first consider a model in which the topography of the ocean floor is generalized and then construct models with
specific obstacle configurations. We introduce the relevant variables and physical constants in Table 1. Unless otherwise
specified, we will use the subscript 0 to denote a characteristic dimensional quantity and the superscript 0 to denote a
dimensional variable.

A characteristic feature of a tsunami wave [7] is the smallness of the parameter h0
k � 1, where h0 is the characteristic

water depth of the ocean and k is the wavelength. The presence of this small parameter allows us to use a system of partial
differential equations (PDEs), namely the shallow water equations [22,25], for modeling tsunami wave dynamics. A detailed
derivation of these equations from the general Navier–Stokes equations is given in [25]. If, in addition, the ratio of the
characteristic wave amplitude to the water depth g0

h0
� 1 is small, then the dynamics of such small amplitude long waves

can be described by the linear shallow water equations [26]:
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Table 1
Nomenclature table of variables and constants used.

Nomenclature
g Vertical elevation of water from quiescent position
u Depth-averaged horizontal flow velocity
h Distance from water surface to sea-floor
h0 Dimensional water depth of sea-floor away from obstacle
hi Dimensional water depth over ith region
ki Dimensionless water depth over ith region; k2

i ¼
hi
h0

x Horizontal position coordinate
xj Horizontal position coordinate of jth region; xjþ1 ¼ xj þ ljþ1

lj Length of jth obstacle
t Time variable
f Initial waveform distribution
u Ocean floor topography
d Distance of solitary wave peak from the x ¼ 0 boundary
k0 Length of solitary wave
g0 Characteristic wave amplitude
u0 Characteristic fluid velocity
c0 Characteristic velocity of wave propagation
k0 Characteristic length of initial wave
t0 ¼ k0

c0
Characteristic time of propagation
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