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a b s t r a c t

In this paper we apply a hybrid finite difference scheme to evaluate the prices of Asian call
options with fixed strike price. We use the Crank–Nicolson method to discretize the time
variable and a hybrid finite difference scheme to discretize the spatial variable. The hybrid
difference scheme uses the central difference approximation whenever the mesh points are
sufficiently away from the left-hand side of the domain to ensure the stability of the
scheme; otherwise a midpoint upwind difference scheme is used. The matrix associated
with the discrete operator is an M-matrix, which ensures that the spatial discretization
scheme is maximum-norm stable. It is proved that the scheme is second-order convergent
with respect to both time and spatial variables. Numerical experiments support these the-
oretical results.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Asian options are derivative securities whose payoffs depend on the averaging prices of the underlying asset over some
time period. Such options are used by traders who are interested to hedge against the average price of a commodity over a
period rather than the price at the expiration date. The price of the Asian option is less subject to price manipulation. Hence
such options are particularly useful for business involved in trading on thinly traded commodities. However, pricing and
hedging Asian options is difficult, especially for options depending on arithmetic averaging. Generally, no closed-form
solutions are available. Thus, a variety of numerical pricing techniques have been proposed [3].

In this paper we focus on pricing arithmetics average Asian call options with fixed strike price. Suppose that the
underlying asset price St follows geometric Brownian motion

dSt ¼ rStdt þ rStdBt ;

where r is the risk-free interest rate, r is the volatility, and Bt is a standard Brownian motion under the risk-neutral measure
P. Let IðtÞ represent the underlying asset price running sum as

IðtÞ ¼
Z t

0
SðsÞds;

then the average is given by AðtÞ ¼ IðtÞ=t. Thus the price CðS; I; tÞ of the continuous arithmetics average Asian call option with
fixed strike price satisfies the following two-dimensional PDE [11,21]
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with the final condition

CðS; I; TÞ ¼max
I
T
� E;0

� �
; ð1:2Þ

where T is the expiry date and E is the strike price. This PDE is a so-called degenerate parabolic problem with several degen-
eracies. As is well-known in computational fluid dynamics, standard central difference method for the convective term will
generate spurious oscillations [1,22].

There are several methods in the open literature for solving the two-dimensional PDE (1.1) and (1.2) directly. Zvan et al.
[22] use flux limiting techniques to price Asian options. Hugger [10] investigates the dependence of the numerical methods
on the various degeneracies and the effectiveness of the artificial viscosity numerical method for pricing a fixed strike Asian
option. Bermúdez et al. [2] present an iterative algorithm combined with higher order Lagrange–Galerkin methods for
pricing Amerasian options. Cen et al. [4] develop a numerical method which is deduced by combining an alternating
direction technique and central difference scheme on a piecewise uniform mesh. Tangman et al. [19] apply the exponential
time integration scheme with a dimensional splitting strategy to price Asian options under a variety of pricing models.

Note that the problem (1.1) and (1.2) is a two-dimensional PDE which leads to greater computational costs. This
motivates the reduction of the problem into one-dimensional problem. By making the change of variables

x ¼ E� I=T
S

; CðS; I; tÞ ¼ Svðx; tÞ; ð1:3Þ

Rogers and Shi [17] have reduced the two-dimensional PDE (1.1) and (1.2) to the following one-dimensional PDE
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vðx; TÞ ¼max �x; 0ð Þ: ð1:5Þ

Note that in Geman and Yor [9], a formula is obtained for the case I P ET as

CðS; I; tÞ ¼ S
rT

1� e�rðT�tÞ� �
þ I

T
� E

� �
e�rðT�tÞ:

Then, by making the change of variables as in (1.3), we have

vðx; tÞ ¼ 1
rT

1� e�rðT�tÞ� �
� xe�rðT�tÞ for x 6 0: ð1:6Þ

Hence we only consider the solution of the PDE (1.4) and (1.5) for x > 0. From (1.6) we obtain the left hand boundary
condition

vð0; tÞ ¼ 1
rT

1� e�rðT�tÞ� �
:

The right hand boundary condition for x! þ1 can be obtained by observing that we only consider the case I < ET, so S! 0
for x! þ1. For S! 0 the option is not exercised rendering it’s value to be 0, i.e.,

lim
x!þ1

vðx; tÞ ¼ 0:

Thus, we will focus on the following PDE

� @v
@t
� 1

2
r2x2 @

2v
@x2 þ

1
T
þ rx

� �
@v
@x
¼ 0;

vðx; TÞ ¼ 0;

vð0; tÞ ¼ 1
rT

1� e�rðT�tÞ� �
;

lim
x!þ1

vðx; tÞ ¼ 0:

For applying the numerical method we need truncate the infinite domain ð0;þ1Þ into ð0;XÞwith an appropriate choice of
X. The boundary condition at x ¼ X is chosen to be vðX; tÞ ¼ 0. Therefore, in the remaining of this paper we will consider the
following PDE [17]
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