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a b s t r a c t

The problem of finding the least change adjustment to a given matrix pencil is considered
in this paper. Desired matrix properties including satisfaction of characteristic equation,
symmetry, positive semidefiniteness, and sparsity are imposed as side constraints to form
the optimal matrix pencil approximation problem. Such a problem is related to the fre-
quently encountered engineering problem of a structural modification on the dynamic
behavior of a structure. Alternating direction method is applied to this constrained minimi-
zation problem. Numerical results are included to illustrate the performance and applica-
tion of the proposed method.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the analytical model of a real-life structure, obtained by the finite element technique, may be rep-
resented by the following dynamic equation (characteristic equation) or generalized eigenvalue problem

Kax ¼ kMax; ð1Þ

where Ma; Ka 2 Rn�n denote the analytical mass and stiffness matrices, respectively, n is the number of degrees of freedom of
the finite element model, and k and x are the eigenvalue and corresponding eigenvector with respect to the matrix pencil
ðMa;KaÞ. In general, Ma and Ka are symmetric positive definite and semidefinite sparse matrices with special zero/nonzero
pattern, respectively. Due to the complexity of engineering structures, the finite element models fail to reproduce the
dynamic behavior of actual structures accurately. Hence, the finite element model should be updated and maintain the topo-
logical structure of the original model.

Over the past years, finite element model updating problem has received much attention. Various methods have been
developed for correcting analytical models to predict test results more closely [1–3]. One of the most common methods
in structural dynamic model updating is the optimal matrix update methods, in which the measured data are assumed to
be exact and the stiffness or/and mass matrices to be corrected should satisfy the system’s relationships with minimal devi-
ation from the finite element model [4–29]. Most of the existed methods just take part of the positive semidefiniteness and
the sparsity requirement of the updated matrix into consideration. Recently, Yuan [30,31] considered the problem of updat-
ing the analytical stiffness matrix to satisfy with the dynamic equation, symmetry, positive semidefiniteness and sparsity
simultaneously, proposed the matrix linear variational inequality approach and proximal-point method for solving the prob-
lem by using partial Lagrangian multipliers technique.
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In this paper, both the mass and stiffness matrices are updated to satisfy with the dynamic equation, symmetry, positive
semidefiniteness and sparsity simultaneously. Such a problem is formulated as the following matrix pencil nearness problem

min
c
2
kM �Mak2

F þ
1
2
kK � Kak2

F

s:t: KXe ¼ MXeKe;

MT ¼ M � 0;

KT ¼ K � 0;
sparseðMÞ ¼ sparseðMaÞ;
sparseðKÞ ¼ sparseðKaÞ;

ð2Þ

where Ke is a nonsingular diagonal matrix and Xe 2 Rn�m is of full column rank, m < n. In general, the magnitude of the stiff-
ness term kK � KakF is far greater than that of the mass term kM �MakF ; c is a scaling factor to narrow the gap.
sparseðMÞ ¼ sparseðMaÞ means that the mass matrix to be corrected should have the same zero/nonzero pattern as the
matrix Ma, and so does sparseðKÞ ¼ sparseðKaÞ.

Note that problem (2) is a minimization of a proper strictly convex quadratic function over the intersection of a finite
collection of closed convex sets in Rn�n, namely, a convex programming problem. Liao et al. [40] discussed the best approx-
imate solution of matrix equation AXBþ CYD ¼ E without the sparsity constraint, which is similar to problem (2). Due to the
positive semidefiniteness and sparsity constraints, it is difficult to express the elements in the feasible region of problem (2)
explicitly. Furthermore, the constraints on M and K can be equivalently transformed into separable constraints on ðM;KÞ.
Hence, Problem (2) can be solved equivalently via a separable convex programming problem, to which alternating direction
method (ADM) can be applied, which was proposed by Gabay and Mercier [32] to solve separable convex programming. In
recent years, alternating direction method has received extensive attention for its applications [33–36,39,41].

Now we introduce some notations for further discussion. I is the identity matrix of appropriate order in context. For
A;B 2 Rm�n, an inner product in Rm�n is defined by hA;Bi ¼ traceðBT AÞ, then Rm�n is a Hilbert space. The matrix norm k � kF

induced by the inner product is the Frobenius norm. Sn
þ is the set of all n� n symmetric positive semidefinite matrices. ei

is the ith column of the identity matrix I and P is an appropriate permutation matrix defined by P ¼ ½ei1 ; ei2 ; . . . ; ein �, where
ði1; i2; . . . ; inÞ is a permutation of ð1;2; . . . ;nÞ.

The remainder of this paper is arranged as follows. In Section 2, the original alternating direction method is briefly
reviewed and a basic assumption is made. In Section 3, we focus on dealing with two subproblems of the equivalent form
of Problem (2). In Section 4, two engineering examples in structure dynamic model updating are performed by our proposed
method. Conclusions are given is Section 5.

2. Preliminaries

For completeness, we first review ADM [32] briefly.
Let G1 : Rs ! ð�1;þ1� and G2 : Rt ! ð�1;þ1� be closed proper convex functions. A is a t � s matrix, and C1 and C2 are

nonempty closed convex subsets of Rs and Rt respectively. Consider the following problem

min G1ðyÞ þ G2ðzÞ
s:t: Ay� z ¼ 0;
y 2 C1; z 2 C2:

ð3Þ

Let k 2 Rt be the Lagrange multiplier vector and r be a positive parameter which penalizes for the violation of the constraint.
The augmented Lagrangian of Problem (3) is

Lrðy; z; kÞ ¼ G1ðyÞ þ G2ðzÞ þ hk;Ay� zi þ r
2
kAy� zk2

2: ð4Þ

Given yðkÞ; zðkÞ and kðkÞ, the iteration scheme of ADM may be described as

yðkþ1Þ ¼ argmin
y2C1

fG1ðyÞ þ hkðkÞ;Ayi þ r
2 kAy� zðkÞk2

2g;

zðkþ1Þ ¼ argmin
z2C2

fG2ðzÞ � hkðkÞ; zi þ r
2 kAyðkþ1Þ � zk2

2g;

kðkþ1Þ ¼ kðkÞ þ r½Ayðkþ1Þ � zðkþ1Þ�:

8>>>><>>>>: ð5Þ

The efficiency of ADM depends on the solutions of yðkþ1Þ and zðkþ1Þ in Eq. (5). If rankðAÞ ¼ s; yðkþ1Þ and zðkþ1Þ are always uniquely
attained. Hence, ADM is well defined for Problem (3). By the definition of the Frobenius norm, the vector type ADM can
be extended directly to the matrix type one. In addition, due to the positive semidefiniteness and the sparsity constraints,
it is difficult to give the conditions for guaranteeing the non-emptiness of the feasible region of Problem (2), denoted by
D. All thought this paper, we assume that D is nonempty.
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