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a b s t r a c t

This paper considers the problem of model reduction of a class of discrete-time systems
subject to Lipschitzian nonlinearities. It is shown that under some conditions the nonlinear
system can be either approximated by a discrete-time linear time-invariant system or a
nonlinear system of reduced order. The computation of the matrices of the reduced-order
system is carried out through the solutions of a set of linear matrix inequalities. The
proposed design is approved by the simulation of reduced-order dynamics of a mass-spring
system subject to a nonlinear friction and a linear electric circuit with uncertain
parameters.
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1. Introduction

Model reduction has received a widespread attention since many decades due to its importance in circuit simulation
[1,2], feedback design, image processing and other engineering fields, see e.g., [3,4]. The reduced order system might be used
as a component in a larger simulation or to develop a low dimensional controller suitable for real time applications. The idea
behind model reduction is to replace the original system by a reduced-order one such that the input–output behaviors are
maintained close to each other. Quite successful methods have been implemented, including but not limited to: balanced-
truncation algorithms, see e.g. [5], Moment matching techniques [3], projection-based procedures, optimal and convex-
optimization techniques, see e.g., [6–10].

In order to capture and preserve the basic properties of the large-order original system while its reduction to a minimal
order system, it is required to define certain criterions guaranteeing bounded error approximation. The H1 norm of the dif-
ference of two transfer functions is one of the most meaningful measures of the approximation error, see e.g., [8]. H2-norm
minimization-based algorithms [11], convex-optimization-based techniques [10,9,12,], and Hankel model-reduction-based
procedures [13] have shown their good performances for a variety of dynamical systems. The reader is also referred to
the references [14–16,3,17,5,18] for different looks on model reduction using Kalman’s minimal realization and balanced
truncation procedures. Recent optimization techniques as numerical genetic algorithms and Particle Swarm Optimization-
based procedures have been successfully applied to model reduction and identification, see e.g., [19] and the references
therein. Further details on available techniques for model reduction are largely discussed in the survey paper [4] and the
references therein. Even though model reduction procedures are developed rather properly for linear dynamical systems,
there are still many issues in their generalization to the nonlinear case, see e.g., [20–26]. Among the difficulties that
appear in nonlinear model reduction are the absence of general methods that assure global approximation with predefined
absolute error, the complexity of the generalization of balancing methods to nonlinear systems, and the problem of stability
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preserving by projection. Even many different approaches to nonlinear model reduction have been developed for continuous
time nonlinear systems, see e.g., [21,23,25,26], the topic of extension of the obtained results to discrete-time nonlinear sys-
tems remains an attractive area of research.

In this paper, we deal with model reduction of a class of stable discrete-time nonlinear systems subject to Lipschitzian
nonlinearities. Examples of such systems include but not limited to: stable Hamiltonian mechanical systems subject to
bounded frictions, stable chemical reactions, and distillation-column systems with rational bounded nonlinearities [27].
As a first objective, it is shown that it is quite possible to approximate a discrete-time high-order nonlinear system by a
low-order linear time-invariant system if the system under consideration is asymptotically stable for the null control input
and globally bounded for any bounded control input. This type of approximation is quite useful for simplification of control-
ler design and system approximation when nonlinearities are poorly known. The design of the reduced-order system is con-
ditioned by the solvability of a set of linear matrix inequalities that must hold simultaneously. The second major result of the
present paper is to lay down a systematic nonlinear model reduction technique, guaranteeing both stability of reduced order
systems and absolute-error approximation. The second model-reduction technique is based on combining Krylov-projection
model-reduction method with convex-optimization procedures giving rise to a nonlinear-model-reduction procedure guar-
anteeing a global absolute error bound. This method does not require nonlinearity approximation or expansion but, in con-
trast to the first developed procedure, it requires the well knowledge of the system dynamics. An example of a fourth-order
mechanical system with nonlinear friction and an example of an electrical circuit are studied to approve the efficiency and
the usefulness of the proposed numerical techniques.

2. System approximation by reduced-order linear systems

2.1. Preliminary results

Throughout this paper, we note by R;N, and ZP0 the set of real numbers, the set of natural numbers, and the set of
positive integer numbers, respectively. The notation A > 0 (resp. A < 0) means that the matrix A is positive definite (resp.
negative definite). A0 is the matrix transpose of A. We note by k � k the usual Euclidean norm. kGðzÞk1 refers to the infinity
norm of a discrete-time transfer function GðzÞ as kGðzÞk1 ¼ supx2½0; 2p�rmaxðGðejxÞÞ, where rmax represents the maximum
singular value of matrices. The space of square summable functions over the interval ½0; N � 1� is denoted by L2½0; N � 1�

and kukk2 ¼ ð
PN�1

0 u0kukÞ
1
2. 0 and I stand for the null matrix and the identity matrix of appropriate dimensions while In and

0n;n stand for the identity matrix of dimensions n� n and the null matrix of dimensions n� n, respectively. We note by
ColðAÞ the set of columns of the matrix A. The symbol ‘‘H’’ in any matrix stands for any element that is induced by transpo-
sition. The following Lemmas are needed for the proof of the main statements.

Lemma 2.1 [28. ] For any constant symmetric matrix M 2 Rn�n;M ¼ M0 > 0, scalar c > 0, vector function x : ½0; c�# Rn such
that the integration in the following is well defined, we have
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Lemma 2.2 (The Schur complement lemma [29]). Given constant matrices M;N, Q of appropriate dimensions where M and Q are
symmetric, then Q > 0 and M þ N0Q�1N < 0 if and only if

M N0

N �Q

� �
< 0; or equivalently

�Q N

N0 M

� �
< 0:

Lemma 2.3 [30]. The following two statements are equivalent:

(1) A is stable and kCðzI � AÞ�1Bþ Dk1 < c.
(2) There exists a symmetric matrix P > 0 satisfying

A0PA� P þ C0C þ ðA0PBþ C0DÞR�1ðB0PAþ D0CÞ < 0 where R ¼ c2I � B0PB� D0D.

In the next subsection, necessary conditions for model-reduction of nonlinear systems by reduced-order linear systems
are given.

2.2. Necessary conditions for nonlinear model reduction with absolute-error constraint

Consider the nonlinear discrete-time system:

xkþ1 ¼ Axk þ f ðxkÞ þ Buk;

yk ¼ C xk;
ð2Þ
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