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a b s t r a c t

The problem considered in the paper is exponential stability of linear equations and global
attractivity of nonlinear non-autonomous equations which include a non-delay term and
one or more delayed terms. First, we demonstrate that introducing a non-delay term with
a non-negative coefficient can destroy stability of the delay equation. Next, sufficient expo-
nential stability conditions for linear equations with concentrated or distributed delays and
global attractivity conditions for nonlinear equations are obtained. The nonlinear results
are applied to the Mackey–Glass model of respiratory dynamics.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Stability of the autonomous delay differential equation

_xðtÞ þ bxðt � sÞ ¼ 0 ð1:1Þ

(the sharp asymptotic stability condition for s > 0 is 0 < bs < p=2) and of the equation with a non-delay term

_xðtÞ þ axðtÞ þ bxðt � sÞ ¼ 0 ð1:2Þ

was investigated in detail, and stability of (1.1) implies stability of (1.2) for any a P 0.
The equation

_xðtÞ þ axðtÞ þ bðtÞxðhðtÞÞ ¼ 0; t P 0; ð1:3Þ

where a > 0 is a constant, b is a locally essentially bounded non-negative function, hðtÞ 6 t is a delay function, is a general-
ization of (1.2) and also is a special case of the non-autonomous equation with two variable coefficients

_xðtÞ þ aðtÞxðtÞ þ bðtÞxðhðtÞÞ ¼ 0; t P 0; aðtÞP 0: ð1:4Þ

Let us note that, generally, asymptotic stability of the equation without the non-delay term

_xðtÞ þ bðtÞxðhðtÞÞ ¼ 0; t P 0 ð1:5Þ

does not imply stability of (1.4).
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Example 1. Consider Eqs. (1.4) and (1.5) for bðtÞ � b > 0 and hðtÞ ¼ ½t�, where ½t� is the maximal integer not exceeding t. The
equation

_xðtÞ þ bxð½t�Þ ¼ 0; t P 0 ð1:6Þ

is asymptotically stable for any b satisfying 0 < b < 2, since the solution on ½n;nþ 1� is xðtÞ ¼ xðnÞ½1� bðt � nÞ� which is a
linear function on any ½n;nþ 1�. Thus xðnÞ ¼ ð1� bÞnxð0Þ and jxðnÞj 6 dnjxð0Þj, where 0 < d ¼ j1� bj < 1.

Let us choose 1:6 < b < 1:9 and consider the equation

_xðtÞ þ aðtÞxðtÞ þ bxð½t�Þ ¼ 0; t P 0 ð1:7Þ

with a periodic piecewise constant non-negative function aðtÞ with the period T ¼ 1. If aðtÞ � a on ½0; e� for 0 < e < 1 then

xðtÞ ¼ b
a
þ 1

� �
xð0Þe�at � b

a
xð0Þ; t 2 ½0; e�:

Let us choose a ¼ 3b and e in such a way that xðeÞ ¼ 0, i.e. e ¼ 1
3b ln 4, and

aðtÞ ¼
3b; n 6 t 6 nþ e;
0; nþ e < t < nþ 1;

�
ð1:8Þ

where n P 0 is an integer. For 1:6 < b < 1:9 we have 0:24 < e < 0:29, thus jxð1Þj ¼ bjxð0Þjð1� eÞ > 1:136jxð0Þj. Further,
jxðnÞj > 1:136njxð0Þj, which means that (1.7) is unstable, while (1.6) is asymptotically stable. Fig. 1, left, illustrates the solu-
tions of (1.6) and (1.7) with b ¼ 1:8; xð0Þ ¼ 1, here jxðnþ 1Þj � 1:34jxðnÞj for (1.7), so (1.7) is unstable while (1.6) is stable.

It is also possible to construct an example of asymptotically stable equation (1.6) with aðtÞ satisfying inf t>1aðtÞ > 0 such
that (1.7) is unstable. For example, consider

aðtÞ ¼
3b; n 6 t 6 nþ e;
0:5; nþ e < t < nþ 1;

�
ð1:9Þ

where b ¼ 1:8; xð0Þ ¼ 1. As previously, xðtÞ ¼ 4
3 xðnÞe�aðt�nÞ � 1

3 xðnÞ on ½n;nþ e�; the solution on ½nþ e;nþ 1� is
xðtÞ ¼ 2bxðnÞðe�0:5ðt�n�eÞ � 1Þ and jxðnþ 1Þj � 1:12jxðnÞj for (1.7). In this case aðtÞP 0:5 for any t, and the solution is unstable
and unbounded (see Fig. 1, right), though the divergence is slower than in the case when a is defined by (1.8).

For scalar differential equation (1.3), where a > 0 is a constant, b is a locally essentially bounded non-negative function,
hðtÞ 6 t is a delay function, the following result is a corollary of [1, Theorem 2.9].

Theorem 1. Suppose 0 6 bðtÞ 6 b; 0 6 t � hðtÞ 6 h and the inequality

a
b

e�ah > ln
b2 þ ab

b2 þ a2
ð1:10Þ

holds. Then Eq. (1.3) is exponentially stable.
The aim of this paper is to extend Theorem 1 to other classes of equations, including (1.4), models with variable coeffi-

cients and several delays, as well as with distributed delays. In Section 3 we consider nonlinear delay differential equations
and apply the results obtained to the Mackey–Glass model of respiratory dynamics in Section 4.
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Fig. 1. Solutions of equations (1.6) and (1.7) with b ¼ 1:8; xð0Þ ¼ 1; e � 0:256721 in the case when a is defined by (1.8) and can vanish (left) and a is
described by (1.9) and satisfies aðtÞP 0:5 (right). All the solutions are oscillatory, (1.6) is exponentially stable, while (1.7) is unstable in both cases.
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