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a b s t r a c t

The real root classification of a given parametric spline function is a collection of possible
cases of its real root distribution on every interval, together with the conditions of its coef-
ficients must be satisfied for each case. This paper presents an algorithm to deal with the
real root classification of a given parametric spline function. Two examples are provided to
illustrate the proposed algorithm is flexible.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The counting and classifying of the real/imaginary roots of a given polynomial have been the subject of many investiga-
tions. The classical Sturm Theorem and Tarski’s Theorem are efficient methods for determining the numbers of real roots of
polynomials with constant coefficients, but inconvenient for those with symbolic coefficients (see [1] for details). Fortu-
nately, there are several different methods to determine the number of the distinct real roots of polynomials with symbolic
coefficients. Yang et al. [2,3] established the complete discrimination system of a real parametric polynomial, which is suf-
ficient for determining the numbers and multiplicities of the real/imaginary roots, namely, determining the complete root
classification. In parallel, Gonzalez-Vega et al. [4] proposed the use of Sturm–Habicht sequences to solve the real roots of
univariate polynomials. In 2009, Liang and Jeffrey [5] proposed automatic computation of the complete root classification
for a real parametric polynomial. More importantly, the algorithm offered improved efficiency and a new test for non-real-
izable conditions.

Spline function (piecewise polynomial) is a natural generalization of polynomial. Thus, it is of theoretic and practical sig-
nificance to study the counting and isolating the real roots of spline functions and its related problems. There exists several
work on this issue [6–13]. For univariate case, Goodman [6] and de Boor [7] studied the relationship between the number of
real roots of a univariate spline and the sequence of its B-spline coefficients, which provides new bounds on the number of
real roots of the spline function. In 1989, Grandine [8] proposed a method for finding all real roots of a spline function based
on the interval Newton method. In 2007, Morken and Reimers [9] presented an unconditionally quadratically convergent
method for computing zeros of spline functions. In 2008, Wang and Wu [10] proposed an algorithm to isolate real roots
of a given univariate spline based on the use of Descartes rule of signs with its B-spline coefficients and de Casteljau algo-
rithm. For multivariate case, Lai et al. [11,12] gave the method to compute the supremum and its distribution of the distinct
torsion-free real zeros of a given parametric piecewise polynomial system. In 2011, Wu and Zhang[13] presented an algo-
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rithm to isolate the real solutions of two piecewise algebraic curves based on the Krawczyk–Moore iterative algorithm. At
the same time, Wu [14] presented an algorithm for computing the real intersection points of piecewise algebraic curves
which is primarily based on the interval zeros of the univariate interval polynomial in Bernstein form. A question will arise:
Can we count or classify of the real roots of a given spline function?

Given a set of spline knots N : �1 6 x0 < x1 < � � � < xN < xNþ1 61. The univariate spline space Sn½x0; x1; . . . ; xNþ1� is
defined as follows:

Sn½x0; x1; . . . ; xNþ1� ¼ fSðxÞ 2 Cn�1jSiðxÞ 2 Pn½x�; i ¼ 0;1; . . . ;Ng; ð1Þ

where, SiðxÞ denotes the restriction of SðxÞ over the interval ½xi; xiþ1�; i ¼ 0;1; . . . ;N, and Pn½x� denotes the set of univariate
polynomials with degree 6 n in variable x. The function SðxÞ is said to be of class Cn�1 if and only if the derivatives
S0ðxÞ; S00ðxÞ; . . . ; Sðn�1ÞðxÞ exist and are continuous. Certainly, Sn½x0; x1; . . . ; xNþ1� is a linear space and its dimension is nþ N þ 1.

It is well-known that an arbitrary univariate spline SðxÞ 2 Sn½x0; x1; . . . ; xNþ1� has the following unified representation [15]

SðxÞ ¼ S0ðxÞ þ
XN

j¼1

cjðx� xjÞnþ; ð2Þ

where truncation function means xþ ¼ x for x P 0 and xþ ¼ 0 for x < 0, and S0ðxÞ is a univariate polynomial with degree 6 n
on the initial interval ½x0; x1�.

Firstly, we have the coarse bound of the number of real roots of a given univariate spline.

Theorem 1.1. If SðxÞ 2 Sn½x0; x1; . . . ; xNþ1�, then the number of the roots of SðxÞ is not greater than nþ N.

Proof. Obviously, the number of real roots of SðxÞ on ½x0; xNþ1� is equal to the summation of the number of real roots of SiðxÞ
on ½xi; xiþ1�; i ¼ 0;1; . . . ;N. Suppose the number of the real roots of SðxÞ on ½x0; xNþ1� is M, then S0ðxÞ has at least M � 1 real root.
Inductively, Sðn�1ÞðxÞ has at least M � ðn� 1Þ real roots. However, it is obvious that piecewise linear spline Sðn�1ÞðxÞ has at
most N þ 1 real roots on ½x0; xN�. Therefore, M � ðn� 1Þ 6 N þ 1, i.e., M 6 nþ N.

It is pointed out that the ‘‘parametric’’ spline function means it contains symbolic coefficients and also allows to have
some certain constant coefficients.

Secondly, we make the following two conventions for a given parametric spline.

� SðxÞ is assumed to be ‘‘regular’’. It means that none of the spline knots is the real roots of SðxÞ, i.e.

SðxiÞ– 0; i ¼ 0;1; . . . ;N þ 1: ð3Þ

� SðxÞ is assumed to be non-degenerate. That’s to say,

degðSiðxÞÞ ¼ n; i ¼ 0;1; . . . ;N; ð4Þ

where SiðxÞ ¼ S0ðxÞ þ
Pi

j¼1cjðx� xjÞn. For example, if we give a parametric spline SðxÞ ¼ 2x4 þ bx2 þ c þ 2ðx� 1Þ4þþ
dðx� 2Þ4þ 2 S4½0;1;2;3�, then SðxÞ has at most 6 real roots (counted with multiplicities) on (0,3) from Theorem 1.1 until
now. In fact, we inevitably encounter another important problem that we want to know all the possible cases of the number
of real roots of SðxÞ and its distribution, as well as the conditions on these symbolic coefficients. h

Undoubting, one can deal with real root classification of piecewise polynomial on every interval individually. However,
the spline function satisfies certain continuity on adjacent knots, we naturally ask a question: Can we tackle the real root
classification of parametric splines on the whole? As the authors knowledge, there is no existing result on the real root clas-
sification of a given parametric spline till now. In this article, we mainly generalize the methods in papers [3,5] to solve the
real root classification of a given univariate parametric spline. From now on, the parametric spline (2) is assumed to be reg-
ular and non-degenerate if not specified.

The rest of this paper is organized as follows. In Section 2, we recall several basic definitions and results on determining
the number of real roots of a given parametric polynomial. In Section 3, we give the algorithm to tackle the real root clas-
sification of a given parametric spline, which is the main part of this paper. Finally, two illustrated examples are provided to
show the algorithm is flexible in Section 4. Also, we conclude this paper in Section 5.

2. Preliminary

In this section, we shall mostly review the existing work with respect to the algorithm proposed by Yang et al. (see [3] for
details and references therein). Let f ðxÞ 2 R½x� and write

f ðxÞ ¼ a0xn þ a1xn�1 þ � � � þ an�1xþ an:
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