Microprocessors and Microsystems 38 (2014) 539-551

journal homepage: www.elsevier.com/locate/micpro

Contents lists available at ScienceDirect

Microprocessors and Microsystems

EMBEDDED
HARDWARE
DESIGN

A framework for reliability-aware embedded system design

on multiprocessor platforms

@ CrossMark

Jia Huang **, Simon Barner ¢, Andreas Raabe?, Christian Buckl ?, Alois Knoll ®

2 fortiss GmbH, Guerickestr. 25, 80805 Miinchen, Germany
YTy Miinchen, Boltzmannstr. 3, 85748 Garching bei Miinchen, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 5 July 2013

Revised 30 October 2013
Accepted 18 February 2014
Available online 12 March 2014

This paper presents a model-driven framework that provides a tool-supported design flow for fault-tolerant
embedded systems. Its system models comprise abstract descriptions of the application and the underlying
execution platform. They provide the input to our analysis and optimization techniques that enable the
automated exploration of design alternatives for applications with reliability requirements. The automated

generation of source code and platform configuration files speeds up the development process. Our contri-

Keywords:

Embedded systems
Reliability

Fault-tolerance

Design optimization
Model-driven development

bution is to advance reliability-aware design further into practice by providing an integrated tool frame-
work and removing unrealistic assumptions in the analyzes. The case studies demonstrate the
effectiveness of our approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Reliability is becoming one of the most important concerns in
today’s embedded systems. However, as technology scales, modern
devices are more susceptible to faults [5]. Such hardware faults
could be permanent (hard errors) or transient (soft errors). Despite
the efforts of the hardware community to enhance the hardware
reliability, there is an increasing need to use system-level Fault-
Tolerance Mechanisms (FTMs) to mitigate the impact of such
faults.

Fault-tolerant embedded system design involves several chal-
lenging problems. First of all, the designer needs to reason about
the system properties in the presence of FTMs to check if all
requirements are met. Respective analysis techniques, such as reli-
ability and timing analyses are needed. Second, since FTMs typically
come with high overhead, it is critical to find the optimal design un-
der given constraints. Therefore, a Design Space Exploration (DSE)
problem arises. It is important to note that the configuration of
FTMs must be considered jointly with other design parameters
due to their correlation. In particular, the amount of redundancy
highly influences the schedulability of the application. For multi-
processor systems, FTM configuration has to be considered together
with the classical task mapping and scheduling problem. Finally,

* Corresponding author.
E-mail addresses: huang@fortiss.org (J. Huang), barner@fortiss.org (S. Barner),
raabe@fortiss.org (A. Raabe), buckl@fortiss.org (C. Buckl), knoll@in.tum.de
(A. Knoll).

http://dx.doi.org/10.1016/j.micpro.2014.02.007
0141-9331/© 2014 Elsevier B.V. All rights reserved.

implementing the selected design on complex platforms such as
Multiprocessor System-on-Chips (MPSoCs) is also challenging.
Here, the designer faces both complex and labor-intensive prob-
lems such as multiprocessor programming, inter-core communica-
tion and the configuration of the execution platform. Therefore, tool
support is highly desirable in order to reduce the design cost and
the time-to-market.

Over the past decades, a lot of research effort has been devoted
to the aforementioned challenges in the design of reliable systems.
However, there is still a gap between theory and practice. On the
one hand, due to the high complexity of the problem, the theoret-
ical studies are typically based on certain assumptions and the
according simplified system models. For instance, in many studies,
it is assumed that any transient faults are detected at the end of the
task using certain fault detectors so that all tasks have perfect fail-
silent behavior [16,29,8,30]. Although a lot of important results
have been achieved by studying this simplified version, such unre-
alistic assumptions limit the practical usability of the proposed
techniques. On the other hand, most of the work focuses only on
a single part of the overall problem and little effort is spent on inte-
grated approaches providing tool support for the entire design pro-
cess. In particular, current work mostly focuses on the “front-end”
of the process, namely calculating the mapping/schedule under
reliability constraints. The challenge of the “back-end”, i.e. imple-
menting the calculated schedule on a complex hardware platform,
is underestimated.

This paper presents a model-driven development (MDD) frame-
work to tackle the aforementioned problems. MDD is a well-known

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.02.007&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.02.007
mailto:huang@fortiss.org
mailto:barner@fortiss.org
mailto:raabe@fortiss.org
mailto:buckl@fortiss.org
mailto:knoll@in.tum.de
http://dx.doi.org/10.1016/j.micpro.2014.02.007
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

540

approach to cope with the rising complexity of embedded system
design [26]. Our framework features modeling, analysis, optimiza-
tion, and code generation tools in order to provide a complete inte-
grated reliability-aware design flow. Fig. 1 compares the traditional
development approach for reliable systems (left) to the design flow
supported by our framework (right).

In the traditional approach, the designer extracts a scheduling
model from the system specification in order to apply the reliabil-
ity-aware scheduling algorithms. These algorithms may operate on
different models (periodic task sets, task graphs, etc.) and the de-
signer has to ensure the consistency. In parallel, the source code
of the application is developed manually, including both functional
code for the application and platform-specific structural code.
Finally, the scheduling results and the source code are combined
to an executable image and the platform configuration. The advan-
tages of the proposed flow stem from the fact that models are first
class citizens in MDD. They serve as central integration point for
subsequent tasks such as analysis, DSE and code/configuration
generation. Models speed up the development process and ensure
the overall consistency by raising the level of abstraction and
automation.

Our approach is based on the following:

- Platform-independent description of the application including
timing and reliability requirements.

- Fine-grained platform model covering both hardware platform
and system software (HW/SW stack).

— Multi-criteria design space exploration: mapping and schedul-
ing w.r.t. timing and reliability constraints (consideration of
permanent and transient faults).

- Automatic insertion of fault-tolerance techniques, including
active redundancy, voting and fault detection to meet user-
specified reliability goals.

- Generation of implementation artifacts such as application C
source code and platform configuration files.

The remainder of the paper is organized as follows. The system
models are presented in Section 3. The main contribution of this
work, namely the reliability-aware design flow is presented in

J. Huang et al./Microprocessors and Microsystems 38 (2014) 539-551

detail in Section 4. A case study is discussed in Section 5. Finally,
Section 6 concludes this paper.

2. Related work
2.1. Fault-tolerant embedded system design

Using system-level FTMs has been addressed in a number of re-
search studies. The approach presented in [36] handles transient
faults by selectively inserting task re-executions. Girault and Kalla
[8] consider fault-tolerant scheduling with active task replications
and present a bi-criteria heuristic algorithm. Izosimov et al. [16]
combine spatial and temporal redundancy and propose novel tech-
niques to share the re-execution slack among multiple tasks. In the
follow-up work [15], a more accurate probabilistic analysis is pre-
sented and hardware hardening is considered. Stralen and Pimen-
tel present a DSE based approach for fault-tolerant deployment of
applications on MPSoCs [33]. The FTMs are described as patterns
that are applied to the application model. Only spatial redundancy
patterns have been considered so far, i.e., dual and triple modular
redundancy (DMR/TMR).

A recent work that is close to our approach is from Bolchini and
Miele [4]. They also propose a generic DSE framework that sup-
ports a configurable set of FTMs, such as active redundancy, fault
detection and voting. Moreover, they also synthesize time-trig-
gered fault-tolerant schedules using genetic algorithms. One major
difference between their work and ours is the fault model. They
adopt a similar fault model as Izosimov et al. [16] and aim at han-
dling a maximum number of concurrent faults. The reliability of
the execution platform is modeled using a simple qualitative tag
(e.g., if the processor supports fault detection or fault-tolerance).
Only coarse evaluation of the system reliability can be provided
in this case. In contrast, our probabilistic reliability analysis pro-
vides precise quantitative results to guide the optimization process.

Tables 1 and 2 provide a qualitative comparison of representa-
tive related work. In Table 1, we first summarize the fault model
utilized by the individual approaches. Some early work in the field
[36,19] considers a single-fault model. This is a reasonable

System specification

Manual step

Extract scheduling
model

Scheduling
algorithm

Manual coding

Automated step

Modeling

Y Q

Optimization

]

‘ ISystem Model

v
Manual
configuration
Y
Platform Application
configuration executable

Scheduling Functional Structural
parameters code code

Transformation

1o

Implementation

generation

Application Platform
executable configuration

Fig. 1. Comparison of traditional and MDD flow.

Download English Version:

https://daneshyari.com/en/article/462720

Download Persian Version:

https://daneshyari.com/article/462720

Daneshyari.com

https://daneshyari.com/en/article/462720
https://daneshyari.com/article/462720
https://daneshyari.com

