
Reliability improvement in private non-uniform cache architecture using
two enhanced structures for coherence protocols and replacement
policies

Mohammad Maghsoudloo, Hamid R. Zarandi ⇑
Department of Computer Engineering and Information Technology, Amirkabir University of Technology (Tehran Polytechnic), Iran

a r t i c l e i n f o

Article history:
Available online 26 December 2013

Keywords:
Cache reliability
Temporal vulnerability factor
Cache coherence protocols
Cache replacement policies
Many-core processors

a b s t r a c t

In this paper, a comprehensive study is first conducted to investigate the effects of cache coherence pro-
tocols and cache replacement policies on the characteristics of NUCA in current many-core processors.
The main focus of this study is to analyze the effects of coherence protocols and replacement policies
on the vulnerability of caches. The outcomes of this analysis indicate two facts: (i) Differences in handling
write operations play an important role to make distinction in favor of or against a cache coherence pro-
tocol; (ii) Near-optimal solutions for replacement problem, aimed at enhancing the performance, can also
make positive influence on reduction of cache vulnerability factor. Based on the results of first step, two
schemes are introduced to enhance the reliability of caches by applying some modification on the struc-
tures of cache coherence protocols and cache replacement policies. The first scheme tries to manage shar-
ing of the dirty data items among different same-level caches. The second helps to give priority and more
opportunity to old dirty blocks than clean blocks for replacement. The proposed schemes reveal about
18% improvement in MTTF, with negligible performance, bandwidth and energy consumption overhead
compared to previous cache structures.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

While chips continue to integrate more processing cores, scala-
bility of shared resource architectures is increasingly playing
important roles in performance and energy consumption. Tiled
many-core chips are emerging as the architecture of choice to pro-
vide scalable structures for shared resources, such as interconnec-
tion network, and shared L2 cache [1,2]. In light of scalability
limitations for conventional interconnection network architectures
(such as shared bus and crossbar switches), existing many-core
chips, have featured a mesh-based interconnection network [3,4].
Furthermore, tiled many-cores give rise to varying access latencies
between the cores and the cache slices spread around the die, nat-
urally leading to a Non-Uniform Cache Architecture (NUCA) of the
on-chip L2 cache [5].

Furthermore, recent studies have shown that as designers have
tried to integrate more of the cache memory hierarchies onto the
processing die, they are particularly most vulnerable on-chip com-
ponents. In today’s microprocessors, more than 60% of chip area is

occupied by the different levels of caches, and they are more likely
to be exposed to the soft errors [6–10]. Most soft errors result from
energetic particle strikes induced by high-energy neutrons of cos-
mic rays, and alpha particles of decaying radioactive impurities in
packaging and interconnect materials [6]. Another problem of
cache memories in current technologies is the increased likelihood
of single-event Multi-Bit Upsets (MBUs) in their arrays [6,7]. The
MBUs are the consequence of a single particle strike, which can flip
multiple bits, simultaneously [6,7].

While lightweight detection mechanisms can cheaply solve the
problem of detecting MBUs, the ability of MBU correction cannot
be easily provided [7]. The dirty data in caches are more suscepti-
ble against MBUs, because they have no valid copies in the other
levels of the cache memory hierarchy. The inefficiency of previous
correction (recovery) mechanisms in facing MBUs for dirty data
items have been shown previously [7]. Enhancing the capability
of previous correction techniques (for covering MBUs) poses signif-
icant performance, energy and area overheads [6].

In order to derive a cost-effective mechanism for enhancing
cache reliability, this paper proposes two schemes to handle the
problem of shared and private dirty data vulnerability. The first
scheme focuses on the problem of shared dirty data vulnerability,
and the second one concentrates on the problem of private dirty
data vulnerability.

0141-9331/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.micpro.2013.12.003

⇑ Corresponding author. Tel.: +98 21 6454 2702.
E-mail addresses: m.maghsoudloo@aut.ac.ir (M. Maghsoudloo), h_zarandi@

aut.ac.ir (H.R. Zarandi).

Microprocessors and Microsystems 38 (2014) 552–564

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2013.12.003&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2013.12.003
mailto:m.maghsoudloo@aut.ac.ir
mailto:h_zarandi@ aut.ac.ir
mailto:h_zarandi@ aut.ac.ir
http://dx.doi.org/10.1016/j.micpro.2013.12.003
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


The basis of idea of the first scheme is to use the natural fea-
tures of private distributed L2, such as data replication and migra-
tion, in the context of cache coherence protocols. First, this paper
shows that different load and utilization of cores in many-core
chips leads to different cache memory usages among tiles. Devel-
oping parallel software, takes the advantages of Thread-Level Par-
allelism (TLP), can be challenging in today’s programming
languages. Given the difficulty of extracting parallelism, cores on
the many-core processors are not being uniformly leveraged [11].
Our simulation results reveal that L2 cache slices in heavily used
cores is forced to evict a block, for 99.6% of the cases, where free
spaces exist in the L2 cache slices of the other tiles. In fact, there
are some free spaces in the entire L2 cache which are not used at
almost any time during execution by the other cores. This problem
occurs due to the structure of private L2 cache, in which, each tile’s
L2 cannot service the requests from the other tiles through inter-
connect. The first proposed scheme tries to exploit these free
spaces to store valid copies for dirty data items. These key points
are extracted from an analysis that shows the cache coherence pro-
tocols can play impressive roles to enhance or to undermine the le-
vel of reliability for data caches. This feature determines the
lifetime duration of cache blocks [12] and the events, which can af-
fect the vulnerability of cache. Various models and protocols have
been devised for sustaining the cache coherence for write-back ca-
ches, such as write-invalidate (MESI, MOESI and MESIF), and write-
update (Dragon and Firefly) protocols [13,14]. Due to the negative
effects of write-update protocols on the interconnection network
and memory bandwidth, write-invalidate protocols are more pop-
ular than write-update ones [13,14]. This paper shows that, as
these protocols imply different characteristics in terms of perfor-
mance and energy consumption, they also differ with respect to
cache Temporal Vulnerability Factor (TVF) and Mean Time To Fail-
ure (MTTF). Since almost all of well-known coherence protocols
have a similar behavior in handling the private and shared clean
data items, differences in handling private and shared dirty mem-
ory blocks make distinction among coherence protocols in favor of
the MOESI protocol. Adding the Owned state in the structure of the
MOESI, which provides the ability of sharing dirty data items
among same-level caches, is associated with improved TVF.

The second proposed scheme reduces the negative impacts of
private dirty blocks on the reliability via applying some modifica-
tion on the structure of replacement policies. As the use of set asso-
ciative mapped caches increases in current architectures, the
importance of cache replacement policies is also increased [15–
17]. The Commercial-Off-The-Shelf (COTS) microprocessors em-
ploy various policies for replacement mechanism such as Random
[12], LRU (Least Recently Used) [18], First-In-First-Out (FIFO) [19],
and two versions of PLRU (Pseudo LRU) [20]. This paper indicates
that near-optimal replacement policies, aimed at enhancing the
hit ratio (performance), can also make positive influence on reduc-
tion of cache vulnerability factor. Therefore, the LRU-based policies
imply better characteristics in terms of TVF and MTTF, as well as
hit ratio, compared to the other policies. While the LRU policy
has high implementation cost and requires complex logic, two
heuristics, presented as alternatives for LRU, lead to better overall
results. These policies reduce amount of time, cache blocks held in
the phase between the last write and replacement; and subse-
quently lead to lower TVF compared to the other policies. The sec-
ond proposed scheme tries to give more opportunity to dirty
blocks for replacement compared to the clean blocks. When a dirty
block is selected as a candidate for replacement, the policy cannot
change the candidate except under the circumstance that the new
candidate block is also dirty.

To evaluate the proposed design decisions, SPLASH-2 bench-
marks suite [21] are utilized. These benchmarks were run on a
functional simulation infra-structure, SIMICS [22], used with an

extended version of Multi-facet GEMS [23]. The results of experi-
ments reveal that the proposed schemes imply 18.3% improvement
in MTTF of data caches, with 2.6% performance, 5.3% bandwidth
and 2.5% L1 cache energy consumption overhead compared to pre-
vious works and cache structures. The other important point is that
the effects of two proposed schemes are approximately cumulative
on MTTF. While these schemes concentrate to reduce two different
vulnerable phases during lifetime of a cache block (the phase be-
tween a write and its next reads, and the phase between last write
and replacement), their effects on TVF are almost independent of
each other.

The rest of paper is organized as follow: Section 2 describes the
background and terminologies. The proposed schemes are ex-
plained in Section 3. Section 4 shows the experimental results. Fi-
nally, Section 5 concludes the paper.

2. Preliminaries

2.1. The MIT RAW architecture

The Tile architecture has its origins in the RAW research proces-
sor developed at MIT and later commercialized by Tilera, a start-up
founded by the original research group [24]. The key differentiating
structure of the tiled architecture is the on-chip interconnection
network and the L2 cache architecture. As the name implies and
depicted by Fig. 1, the chip is structured as a two-dimensional ar-
ray of tiles, where each tile contains a processor core with dedi-
cated L1 caches, a slice of the L2 cache, a slice of the directory
and two network interfaces connecting the node to the Network
on Chip (NoC). The L2 slice can be either a part of a shared L2 cache
or a private L2 for the local core. In case of a shared L2, cache blocks
are address-interleaved among the L2 slices. In case of private L2s,
each core accesses its own L2 tile [1,24]. Due to higher hit rate, pri-
vate L2 cache organizations have been more concentrated by
industry and academia than shared L2 [25–27]. Our contribution
in this paper is also a novel NUCA design for tiled many-core based
on private partitioning, because of following advantage:

� Private L2 caches have the advantage that most L1 misses can
be handled locally, so the number of remote on-chip L2 cache
accesses is reduced [26,49].
� Private cache based designs lend themselves to easier imple-

mentation of performance isolation, priority and QoS, which
traditionally have been assumed or needed by applications
and operating systems [26,50].
� Instead of building a highly associative shared cache to avoid

inter-thread contention, the same set-associativity is available
for an aggregate cache formed by the private caches, each with
much lower set associativity, thus reducing power, complexity
and latency overhead [26].
� The bandwidth requirement of the cross chip interconnection

network is generally much lower with private L2 caches, and
this leads to a simpler and potentially higher performing net-
work [26].

2.2. Related work

The solution space of existing techniques can be classified into
process-, circuit- and system-level solutions.

2.2.1. Process-level techniques
The key solution of process-level techniques that can reduce the

soft error rate is modifying the structure of SRAM cell at the layout-
level. Deep N-well technology and Silicon-On-Insulator (SOI) are
two common methods to provide isolation from harmful particle

M. Maghsoudloo, H.R. Zarandi / Microprocessors and Microsystems 38 (2014) 552–564 553



Download	English	Version:

https://daneshyari.com/en/article/462721

Download	Persian	Version:

https://daneshyari.com/article/462721

Daneshyari.com

https://daneshyari.com/en/article/462721
https://daneshyari.com/article/462721
https://daneshyari.com/

