A parallel algorithm for generating ideal IC-colorings of cycles
 CrossMark

Li-Min Liu
Department of Applied Mathematics, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC

ARTICLE INFO

Keywords:

IC-coloring
Branch-and-bound
Ideal IC-coloring
IC-index

Abstract

For a given graph G with the vertex set $V(G)$, a coloring $f: V(G) \rightarrow \mathbb{N}$ produces α where $\alpha=\sum_{u \in V(H)} f(u)$ for some connected subgraph H of $G\left(\sum_{u \in V(H)} f(u)=0\right.$ if $\left.V(H)=\varnothing\right)$. The coloring f is an IC-coloring of G if f produces each $\alpha \in\{0,1, \ldots, S(f)\}$, where $S(f)$ is the maximum number that can be produced by f. The IC-index $M(G)$ of the graph G is the number $\max \{S(g) \mid g$ is an IC-coloring of $G\}$. An IC-coloring f is ideal if $S(f)$ is equal to the number of connected subgraph of G. In this paper, a sound and complete parallel algorithm based on the branch and bound technique is proposed to generate ideal IC-colorings of cycles, C_{n}. Experiments identified 118 ideal IC-colorings of C_{n} when $2<n<20$. Some cycles with particular length do not have any ideal IC-colorings while C_{18} has the maximal 51 ideal IC-colorings. No pattern appeared among cycles with ideal IC-colorings, regarding the length of cycles.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

For a given graph G with the edge set $E(G)$ and vertex set $V(G)$, a coloring $f: V(G) \rightarrow \mathbb{N}$ may produce α if $\alpha=\sum_{u \in V(H)} f(u)$ for some connected subgraph H of $G\left(\sum_{u \in V(H)} f(u)=0\right.$ if $\left.V(H)=\varnothing\right)$. The coloring f is an IC-coloring of G if f produces each $\alpha \in\{0,1, \ldots, S(f)\}$, where $S(f)$ is the maximum number that can be produced by f. The IC-index $M(G)$ of the graph G is the number $\max \{S(g) \mid g$ is an IC-coloring of $G\}$. The number of connected subgraph of a graph G is the natural upper bound of IC-index as described by Salehi et al. [1]. An IC-coloring f of G is maximal if it is an IC-coloring of G when $S(f)=M(G)$. An IC-coloring f is ideal if $S(f)$ is equal to the number of connected induced subgraph of G. Saheli et al. [1] introduced the problem of finding IC-indices and IC-colorings of finite graphs. This problem may be considered as a derivative of the postage stamp problem in number theory [2-8]. Salehi et al. [1] have also studied the IC-indices of complete graphs, stars, doublestarts, paths, cycles, and wheels. Shiue and Fu [9] obtained the IC-index of a complete bipartite graph, $K_{m, n}$, with $M\left(K_{m, n}\right)=3 \cdot 2^{m+n-2}-2^{m-2}+2$, for $2 \leqslant m \leqslant n$. Liu and Lee [10,11] investigated the IC-colorings and IC-indices of complete d-partite graphs and provided some properties and initial results.

This study focuses on finding ideal IC-colorings of a cycle C_{n}, with n nodes, which has $n(n-1)+1$ connected subgraphs, denoted as $I\left(C_{n}\right)$ and $M\left(C_{n}\right) \leqslant I\left(C_{n}\right)$, for any $n \geqslant 3$. Fig. 1 shows maximal IC-colorings of C_{3}, C_{4}, C_{5}, and C_{6}. Fink [4] presented a systematic way f to label cycles where f satisfies constraints of IC-colorings with $S(f)=n(n+1) / 2$ that provides a lower bound of IC-index for cycles. Hence, the following inequality is obtained:

$$
\frac{n(n+1)}{2} \leqslant M\left(C_{n}\right) \leqslant I\left(C_{n}\right), \quad \text { for any } n \geqslant 3
$$

[^0]

Fig. 1. Maximal IC-colorings of C_{3}, C_{4}, C_{5}, and C_{6}.

For IC-colorings illustrated in Fig. 1, the maximal IC-colorings are also ideal with $M\left(C_{n}\right)=I\left(C_{n}\right)$ for $3 \leq n \leq 6$. Without providing a systematic way to generate maximal IC-colorings of cycle, Salehi et al. [1] indicated that C_{7} does not have any ideal IC-coloring. By exhaustive search, 13 maximal IC-colorings of C_{7} are discovered. Fig. 2 shows Fink's [4] IC-coloring f with $S(f)=28$ and one of the maximal IC-colorings of C_{7} with $M\left(C_{7}\right)=39$.

This preliminary investigation shows that while some maximal IC-colorings of cycles are ideal, others are not. Justified by the fact that the algorithm to generate maximal IC-colorings for cycles is not trivial, it is useful to know in advance whether a cycle with a particular length n has ideal IC-colorings. However, a simple unoptimized exhaustive search algorithm may not be practical in finding an ideal IC-coloring because it requires significant computational resources as the length of cycle increases. In this paper, an effective parallel algorithm based on the branch and bound ($B \& B$) technique is proposed. Different scenarios of ideal IC-colorings of cycles with more than 2 vertices are investigated. The decision model (inclusion/exclusion principles) of the proposed algorithm is based on the two theorems described in Section 2 and these two theorems make the proposed algorithm sound and complete. In other words, the algorithm can generate all ideal IC-colorings of the cycle C_{n}. If it cannot, the ideal IC-coloring does not exist for C_{n}.

The rest of the paper is organized as follows. Section 2 describes all notations and theorems (with proof) used in this paper. Section 3 explains the decision model (inclusion/exclusion rules) used in the proposed algorithm. Section 4 is the section for the proposed algorithm followed by the experimental results in Section 5. Finally, the conclusions are presented in Section 6.

2. Notations and theorems

2.1. Notations

Vertex: $\langle f(v)\rangle$ indicates that $f(v)$ is produced by a single vertex v in a coloring f. For example, $\langle 4\rangle$ indicates that a vertex v exists where $f(v)=4$.

Edge: $\left(f\left(v_{1}\right), f\left(v_{2}\right)\right)$ indicates that there exists an edge between vertices v_{1} and $v_{2} .\left(f\left(v_{1}\right), f\left(v_{2}\right)\right)$ is equivalent to $\left(f\left(v_{2}\right), f\left(v_{1}\right)\right)$. For instance, $(1,2)$ is equivalent to $(2,1)$; both indicate that two adjacent vertices v_{1} and v_{2} exist where $f\left(v_{1}\right)=1$ and $f\left(v_{2}\right)=2$.

Path: $\left(f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{m}\right)\right)$ represents a path (in a cycle) with m vertices $v_{1}, v_{2}, \ldots, v_{m}$ where $\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)$ holds for $1 \leqslant i \leqslant m-1$. Paths are also direction insensitive, similar to edges. $\left(f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{m}\right)\right)$ is equivalent to $\left(f\left(v_{m}\right), f\left(v_{m-1}\right), \ldots, f\left(v_{1}\right)\right)$. For instance, path $(1,2,3)$ is equivalent to $(3,2,1)$ and the ideal IC-coloring for C_{6} contains paths $(4,2,3,7)$ and $(1,7,3)$, as shown in Fig. 1.

Derived Path: a path containing three or more vertices is called a derived path.
Cycle: $\left(f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right)_{r}$ represents a cycle with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ where both $\left(f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right)$ and $\left(f\left(v_{1}\right), f\left(v_{n}\right)\right)$ hold. For example, the ideal IC-coloring for C_{6} contains $(1,7,3,2,4,14)_{r}$, as shown in Fig. 1 .

Cycle Edge: $\left(f\left(v_{1}\right), f\left(v_{2}\right)\right)_{c}$. An edge $\left(f\left(v_{1}\right), f\left(v_{2}\right)\right)$ will be marked with a subscript ' c ' if a path $\left(f\left(v_{1}\right)\right.$, $\left.f\left(v_{i_{1}}\right), \ldots, f\left(v_{i_{j}}\right) f\left(v_{2}\right)\right), j \geqslant 1$, exists.

Path Permutation: $\left(f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{m}\right)\right)^{*}$ represents all paths that can be constructed by vertices $v_{1}, v_{2}, \ldots, v_{m}$. For instance, $(1,1,2)^{*}$ represents 2 paths: $(1,1,2)$ and $(1,2,1) ;(1,2,3)^{*}$ represents 3 paths: $(1,2,3),(2,1,3)$, and ($1,3,2$). For an edge with two vertices v_{1} and $v_{2},\left(f\left(v_{1}\right), f\left(v_{2}\right)\right)=\left(f\left(v_{1}\right), f\left(v_{2}\right)\right)^{*}$.

Tree Path: $\overline{\left(N_{1}, N_{2}, \ldots, N_{m}\right)}$ represents a decision tree path with m ordered nodes N_{1} to N_{m} rooted at $N_{1} . N_{i+1}$ is a child node of N_{i} for $1 \leqslant i \leqslant m-1$. A node can be a vertex or a path (including the cycle edge and the derived path).

2.2. Theorems

Theorem 2.1. An ideal IC-coloring f for cycles does not contain two connected subgraphs H and I where $\sum_{u \in V(H)} f(u)=\sum_{v \in V(I)} f(v)$ and $H \cap I=\varnothing$.

Proof. If an IC-coloring f for a cycle G is ideal, all $G^{\prime} S I\left(C_{n}\right)$ connected subgraphs must produce numbers from 1 to $I\left(C_{n}\right)$ distinctively. If two connected subgraphs produce the same α, the coloring f cannot be ideal, since at least one number exists, between 1 and $I\left(C_{n}\right)$, that cannot be produced.

https://daneshyari.com/en/article/4627222

Download Persian Version:
https://daneshyari.com/article/4627222

Daneshyari.com

[^0]: E-mail address: 1mliu@math.cycu.edu.tw

