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a b s t r a c t

Gauss–Laguerre quadrature plays an important role in implementing the numerical steep-
est decent method for computing highly oscillatory integrals. However, it consumes too
much time when the analytic region of the integrand is narrow. In this paper, we analyze
the convergence rate of the transformed Clenshaw–Curtis quadrature, and show that this
method also shares the property that the higher the oscillation, the better the calculation.
Moreover, it is efficient to compute highly oscillatory integral with a nearly singularity.
Numerical tests are performed to verify our given results.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In many areas of science and engineering one often encounters the problem of numerical calculation of integrals. In the
basic quadrature problem, we are given a function h 2 Cð½a; b�Þ and wish to calculate

I½h� ¼
Z b

a
hðtÞdt: ð1Þ

A standard idea for doing this is substituting the integrand h by its interplant qn at a certain set of nþ 1 distinct nodes
t0; . . . ; tn in ½a; b�, for example, the Clenshaw–Curtis (C–C) and Gauss (G–J) formulas [1–4]. Unfortunately, when the integrand
behaves highly oscillatory, the efficiency of these classic methods are often poor [5]. In past several decades, a great many
methods have been developed for computation of highly oscillatory integrals [5–11]. Among these techniques, the numerical
steepest decent method [6] has proven to be one of the most efficient approaches for the analytical integrand in a large
region of the complex plane, which contains the integration interval. The main spirit of this method is transforming the
highly oscillatory integrand into a exponentially damped function, then the work remaining is evaluation of the integral like

Ir ½f � ¼
Z 1

0
f ðtÞe�rtdt: ð2Þ

Here r is often called the frequency. The asymptotic error is also given in [6]. Generally, the error behaves like Oðr�2n�1Þ for n-
point Gauss–Laguerre quadrature (G–L), as r !1. However, in computing practice, the frequency is often fixed, and little
attention has been paid to the convergence when n!1. So will this method behaves well in this case? In history, plenty
of papers concerns the convergence of Gauss–Laguerre quadrature, for example, [12] for entire functions, [13] for functions
of finite regularity, and so on. We show, in Table 1, the computational results of numerical steepest decent method equipped
with Gauss–Laguerre quadrature for the oscillatory integralZ 1

0

t2

25ðt þ 10�12Þ
2 e�tþi10tdt:
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It can be seen from this table that the Gauss–Laguerre quadrature converges quite slowly when the integrand behaves
nearly singular. Therefore, it is necessary to develop efficient approaches for these integrals, which is also the aim of this
paper. In Section 2, we introduce the transformed Clenshaw–Curtis quadrature first. Then we study its convergence rate.
Numerical tests in Section 3 verify our given results and show the efficiency of this method for computing Pollaczek
integrals.

2. The transformed Clenshaw–Curtis quadrature (T-C–C)

Although the polynomial plays an important role in various approximation problems, an alternative approximation for
functions which has a narrow analytic region is the beyond polynomial [14,15]. That is, instead of approximating a function
f ðxÞ on ½�1;1�, we approximate f ðgðsÞÞ on ½�1;1� by a polynomial pNðsÞ, where x ¼ gðsÞ denotes a map from ½�1;1� to itself.
Specially, for the function possessing a singular point ~z ¼ ~aþ i~b, we can define a sinh transformation as follows [16].

gðsÞ ¼ ~aþ ~b sinhð~ls� ~gÞ; ð3Þ

~l ¼ 1
2

arcsinh
1þ ~a

~b

� �
þ arcsinh

1� ~a
~b

� �� �
; ð4Þ

~g ¼ 1
2

arcsinh
1þ ~a

~b

� �
� arcsinh

1� ~a
~b

� �� �
: ð5Þ

This kind of approximation behaves well even when the singular point t comes to the segment ½�1;1�. Theoretical aspects
of the beyond polynomial interplant can be found in [15], and we list results without details of the proof.

Theorem 1. For a given q > 1, let functions f and g be analytic in [-1,1] and analytically continuable to the open Bernstein ellipse
Eq with jf ðzÞj 6 M, then the transformed Clenshaw–Curtis interplant satisfies

k f � pNðg�1ðxÞÞk1 6
4Mq�N

q� 1
: ð6Þ

An important application of transformed polynomial approximations is quadrature. In particular, a transformed
Clenshaw–Curtis quadrature formula can be obtained by applying Clenshaw–Curtis quadrature to the right term of the
following identity

Z 1

�1
f ðxÞdx ¼

Z 1

�1
f ðgðsÞÞg0ðsÞds: ð7Þ

Now let us consider a special transformed Clenshaw–Curtis quadrature for Ir ½f �. First, we introduce the definition of a class
of functions considered in this paper.

Definition 1. Any function gðzÞ is said to be in Sf½0;1Þg if it satisfies the following conditions:

� gðzÞ is analytic for any complex z with ImðzÞ 6 0;
� gðzÞ has a singular point z� ¼ aþ ib near the endpoint z ¼ 0;
� gðzÞ is bounded by M > 0 on ½0;1Þ.

Suppose f ðtÞ 2Sf½0;1Þg in (2). Then for any given tolerance error � > 0, letting A ¼ � lnðr�=MÞ=r, we obtainZ 1

A
f ðtÞe�rtdt

���� ���� 6 Z 1

A
Me�rtdt ¼ �: ð8Þ

Therefore, we can truncate the integral (2) at t ¼ A, that is,

Ir ½f � ¼
Z A

0
þ
Z 1

A

� �
f ðtÞe�rtdt �

Z A

0
f ðtÞe�rtdt: ð9Þ

Table 1
Relative errors.

r n N 100 200 500 1000 2000 5000

10 1.0e�04 1.2e�04 1.3e�04 1.5e�04 1.6e�04 1.8e�04
20 2.0e�04 2.3e�04 2.7e�04 2.9e�04 3.2e�04 3.6e�04
50 5.1e�04 5.7e�04 6.7e�04 7.3e�04 8.0e�04 8.8e�04
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