
Bit Impact Factor: Towards making fair vulnerability comparison

Serdar Zafer Can a, Gulay Yalcin b,⇑, Oguz Ergin a, Osman Sabri Unsal b, Adrian Cristal b,c

a TOBB University of Economics and Technology, Söğütözü Avenue 43, Söğütözü, Ankara 06560, Turkey
b Barcelona Supercomputing Center, c/ Jordi Girona, 29 08034 Barcelona, Spain
c IIIA – CSIC – Spain National Research Council, Campus de la UAB, E-08193 Bellaterra, Catalonia, Spain

a r t i c l e i n f o

Article history:
Received 30 October 2013
Revised 26 April 2014
Accepted 27 April 2014
Available online 10 May 2014

Keywords:
Architectural vulnerability factor
Soft errors
Vulnerability
Fault injection

a b s t r a c t

Reliability is becoming a major design concern in contemporary microprocessors since soft error rate is
increasing due to technology scaling. Therefore, design time system vulnerability estimation is of para-
mount importance. Architectural Vulnerability Factor (AVF) is an early vulnerability estimation method-
ology. However, AVF considers that the value of a bit in a clock cycle is either required for Architecturally
Correct Execution (i.e. ACE-bit) or not (i.e. unACE-bit); therefore, AVF cannot distinguish the vulnerability
impact level of an ACE-bit. In this study, we present a new dimension which takes into account the vul-
nerability impact level of a bit. We introduce Bit Impact Factor metric which, we believe, will be helpful
for extending AVF evaluation to provide a more accurate vulnerability analysis.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Transient faults such as bit flips mainly caused by particle
strikes, are important problems in a digital system design [1,2].
These particle strikes do not result in permanent faults but may
lead to system crashes, and hence, are termed as ‘‘soft errors’’. It is
predicted that the soft error problem will increase in the future sys-
tems since, in every new generation of manufacturing technology,
feature sizes decrease; consequently error susceptibility of digital
circuits increases [3]. This increasing soft error rate makes reliabil-
ity a major design concern in contemporary microprocessors.

The vulnerability of the system to soft errors should be quanti-
fied as early as possible at design time, so that required precautions
can be taken. Also, it is important not to overestimate/underesti-
mate the vulnerability of the system due to the associated
performance/power overheads.

Mukherjee et al. define the Architectural Vulnerability Factor
(AVF) of processor components to provide early reliability estima-
tion [4]. AVF analysis is implemented based on the fact that sys-
tems are known to mask some of the faults either at the circuit
level or architectural level and these faults do not propagate to
the final outcome of a program. Quantifying this masking effect
allows adjusting the level of error protection in the design of a dig-
ital system.

AVF is defined as the average ratio of the bits in the system that
are required for Architecturally Correct Execution (i.e. ACE-bits) at
a given clock cycle. AVF analysis does not care about the process of
a bit flip creating the error, but it rather qualifies the outcome: if
the flip on a stored bit results in a system level visible error, the
flipped bit is defined as ACE-bit. In reality, a bit flip may lead to
an unwanted outcome through different paths.

Mukherjee et al. advocate that the AVF of the whole processor
can be calculated by summing the AVFs of all structures multiplied
by their area normalized with respect to total chip area. However,
this assumption introduces discrepancies in the vulnerability espe-
cially for systems with many components or for long-running
workloads [5]. This is mainly due to two reasons: (1) AVF always
assumes that all of the ACE-bits in a processor component or in
an instruction have the same impact on vulnerability. (2) AVF
assumes that ACE-bits in different components are equally impor-
tant for the vulnerability. Due to these limitations, it is not possible
to make an apple-to-apple reliability comparison between hard-
ware components (e.g. register file, issue queue) or different parts
of a hardware component (e.g. data or tag area of the cache).

In this study, our goal is investigating a new dimension that
provides a comparison between different bit types and a compari-
son between different hardware components. To this end, we start
from the fact that not all of the bits belong to the same field type,
and we show that the impact of faults occurring on different fields
are different.

For instance, a single bit fault occurring on the immediate value
of an instruction may cause the result of the instruction to be faulty
in one bit position. However, if a failure occurs in the source register

http://dx.doi.org/10.1016/j.micpro.2014.04.009
0141-9331/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: szcan@etu.edu.tr (S.Z. Can), gyalcin@bsc.es (G. Yalcin),

oergin@etu.edu.tr (O. Ergin), ounsal@bsc.es (O.S. Unsal), acristal@bsc.es (A. Cristal).

Microprocessors and Microsystems 38 (2014) 598–604

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.04.009&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.04.009
mailto:szcan@etu.edu.tr
mailto:gyalcin@bsc.es
mailto:oergin@etu.edu.tr
mailto:ounsal@bsc.es
mailto:acristal@bsc.es
http://dx.doi.org/10.1016/j.micpro.2014.04.009
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


identifier, it causes reading completely different source value from
the wrong register which may cause multiple bit failures in the
result of the instruction.

We first classify bit types in several hardware components (i.e.
Register File, Reorder Buffer and Issue Queue) in terms of vulnera-
bility level, and we examine impact of a single bit flip in each class.
We define Bit Impact Factor (BIF), which shows the vulnerability
level of a bit, and indirectly allows the quantification of the relative
vulnerability across processor components and component fields.

The contributions of this study are:

� We classify bit types in several hardware components (i.e. Reg-
ister File, Reorder Buffer and Issue Queue) in terms of vulnera-
bility level.
� We define Bit Impact Factor (BIF) which shows the average

number of bits affected in the next dependent component when
the defined bit fails.
� We extend AVF with BIF dimension in order to provide more

accurate vulnerability analysis and to allow connecting the vul-
nerability of different hardware components.

2. Quantifying soft error impact factor

In this section, we first explain AVF principles. Then, we classify
bits within microarchitecture classified according to the informa-
tion they store and on the vulnerability impact of bits.

2.1. Architectural Vulnerability Factor (AVF)

Even though a bit is flipped as a result of a particle strike, the
program running on the processor may not be affected. This is
because of the fact that the values of many bits inside the processor
components are not required for the correct execution. The bits
that are needed for the Architecturally Correct Execution (ACE) of
the running program were previously termed as the ‘‘ACE-bits’’
by Mukherjee et al. [4]. Each structure inside a processor contains
a variable number of ACE bits over program execution time which
determines the level of its vulnerability to soft errors. If the num-
ber of ACE bits in the structure is high, it is more probable that a bit
flip will result in an error. The level of a component’s vulnerability
to soft errors is termed as Architectural Vulnerability Factor (AVF).
AVF is a useful metric in the design time of a processor in order
to verify that the processor meets the reliability targets and is cal-
culated with the following equation:

AVF ¼ Average Number of ACE Bits in a Hardware Structure
Total Number of Bits in the Hardware Structure

ð1Þ

2.2. Bit classification

In all of the vulnerability factor definitions, the objective is to
decide whether or not a bit flip results in a visible fault by a prede-
fined time. This approach assumes that there is no level of vulner-
ability; a bit can either be vulnerable or not. In reality, the impact
of a fault in different fields of a processor component differs. Some
faults may result in more bit flips during the fault’s propagation
and lead to the ultimate system crash faster, while others may
be localized into a single bit.

In Fig. 1, we present a case in an ACE instruction. In the instruc-
tion, any flips in some bits are more likely to cause an error than
other bits. In the figure, the code multiplies a number by 3 and if
the result is lower than 8, the number is increased by 2. At the
end of the correct execution, R1 holds 4. After the comparison oper-
ation (i.e. I3), R0 becomes un-ACE since, later, it is overwritten by 0.
In the figure, we present two faulty cases for the multiplication

instruction (i.e. I2). In the first case, the fault affects the immediate
value and the number is multiplied by 2 instead of 3. The change in
the immediate value do not change the result of the branch instruc-
tion and the final result in R1 still becomes 4. In the second case, the
fault affects the destination register identifier and the result is writ-
ten to R1 instead of R0. This fault does not affect the result of com-
parison operation either and branch is still not taken. However, the
value written to R1 is quite different than the correct one. Thus, in
the example, a possible fault in the destination register identifier is
more vital than a fault in the immediate value.

The number of faulty bits that a bit flip causes can be used as a
metric to show the impact of an error as it quantifies the maskabil-
ity of the fault. As in the previous example, the probability of a
maskable fault in the immediate value is higher than a maskable
fault in the destination register identifier. Thus, we define Bit
Impact Factor (BIF) which shows the average number of bits
affected in the next dependent component when the defined bit
fails.

A faulty value does not affect the system unless it is read from
its location and used for a calculation. All of the read data will
eventually arrive at the functional unit and an operation will be
performed on it. Therefore the functional unit is the actual location
where the degree of masking is determined by the number of faults
arriving to the inputs of the unit and by the operation performed
on the inputs (showed in Fig. 2). We classify information types
stored in processor components according to the effects of them
on the input parameters of the functional units. The classification
is as following:

1. Regular Data (registers, immediate values, etc.)
2. Opcodes (ALU op, Function bits)
3. Source Identifiers (source physical register tags)
4. Destination Identifiers (destination tags, structure entry ids

such as reorder buffer id and LSQ id)
5. Control Information (These bits hold the status of the stored

information like ready and valid)
6. System Level Bits

In this section, we explain these groups with a Single Event
Upset (SEU) model.

2.2.1. Regular data
Each bit, other than the control bits, of the register file as well as

immediate values belong to the regular data group. When a bit flip
occurs on any of the bits, a new value that is hamming distance 1
apart from the original value is created. This new value may create
a single bit difference at one of the source inputs of the functional
unit as shown in Fig. 3.

Many operations can mask a single bit fault and the fault may
not propagate to the result value depending on the operation. If
any fault is observed at the output of the functional unit, it propa-
gates to the next dependent instruction as the result value is stored
inside the register file and used as a source operand.

2.2.2. Opcode
Opcode is passed to the processor by the compiler and is

decoded to generate the instruction payload by the processor.
Depending on the design of the instruction set, many opcodes
may be similar to each other in terms of the opcode value perform-
ing similar operations. For example, in Alpha instruction set,
opcodes between 14.02A and 14.7 EB perform variants of the SQRT
operation. Therefore changing the opcode in a single bit location
sometimes leads to no error and is totally masked.

S.Z. Can et al. / Microprocessors and Microsystems 38 (2014) 598–604 599



Download English Version:

https://daneshyari.com/en/article/462726

Download Persian Version:

https://daneshyari.com/article/462726

Daneshyari.com

https://daneshyari.com/en/article/462726
https://daneshyari.com/article/462726
https://daneshyari.com

