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a b s t r a c t

A metric generator is a set W of vertices of a graph GðV ; EÞ such that for every pair of ver-
tices u;v of G, there exists a vertex w 2W with the condition that the length of a shortest
path from u to w is different from the length of a shortest path from v to w. In this case the
vertex w is said to resolve or distinguish the vertices u and v. The minimum cardinality of a
metric generator for G is called the metric dimension. The metric dimension problem is to
find a minimum metric generator in a graph G. In this paper, we make a significant advance
on the metric dimension problem for circulant graphs Cðn;�f1;2; . . . ; jgÞ; 1 6 j 6
bn=2c; n P 3, and for Harary graphs.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let GðV ; EÞ be a simple connected and undirected graph. For x; y 2 V let dðx; yÞ denote the distance between x and y. A ver-
tex v 2 V is said to resolve or distinguish two vertices x and y if dðv ; xÞ– dðv; yÞ. A set W # V is said to be a metric generator
for G if any pair of vertices of G is distinguished by some element of W. A minimum metric generator is called a metric basis,
and its cardinality the metric dimension of G, denoted by dimðGÞ. For an ordered set W ¼ fw1;w2; . . . ;wkg of VðGÞ, we refer to
the k-vector (ordered k-tuple) codeðv jWÞ ¼ ðdðv ;w1Þ; dðv ;w2Þ; . . . ; dðv ;wkÞÞ as the code (or representation) of v with respect to
W. Thus we can have another equivalent definition. The set W is called a metric generator if distinct vertices of G have distinct
codes with respect to W. The metric dimension problem has been studied in different papers including [7,11,28,31], where it
is also referred to as the location number. Note that metric basis, locating set and resolving set are different names used by
different authors to describe the same concept. In this paper we use the terms metric basis and metric dimension.

The problem of finding the metric dimension of a graph was studied by Harary and Melter [11]. Slater described the use-
fulness of this idea in long range aids to navigation [28]. Melter and Tomescu [23] studied the metric dimension problem for
grid graphs. The metric dimension problem has been studied also for trees, multi-dimensional grids [18] and torus networks
[19]. The concept of metric dimension has some applications in chemistry for representing chemical compounds [17] as well
as in problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures.
Other applications include navigation of robots in networks and other areas [5,12]. Khuller et al. [18] describe the application
of this problem in the field of computer science and robotics. It is interesting to learn [11] that a graph has metric dimension
1 if and only if it is a path. If G has n vertices then it is clear that 1 6 dimðGÞ 6 n� 1. Also dimðKnÞ ¼ n� 1; dimðCnÞ ¼ 2, and
dimðKm;nÞ ¼ mþ n� 2, where Kn;Cn, and Km;n are the complete graph, the cycle, and the complete bipartite graph, respec-
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tively [11]. Garey and Johnson [10] claimed that the problem of metric dimension is NP-complete for general graphs by a
reduction from 3-dimensional matching. Manuel et al. [20] have proved that the metric dimension problem is NP-complete
for bipartite graphs by a reduction from 3-SAT, thus narrowing down the gap between the polynomial classes and NP-com-
plete classes of the metric dimension problem. The problem has been studied for Beneś network, honeycomb network and
certain binary tree derived architectures [20–22]. The metric dimension of Cartesian product of graphs was studied in [6]. In
2009, Saputro et al. studied the metric dimension of a complete n-partite graph and its Cartesian product with a path [26].
The metric dimension of the lexicographic product [27] and corona product of graphs was studied in detail in [30]. Rodrí-
guez-Velázquez et al. obtained closed formulae and tight bounds for the metric dimension of strong product graphs [25].
Iswadi et al. [14,15] discussed the metric dimension problem of the amalgamation of cycles. A variant of location number,
locating-chromatic number of the amalgamation of stars and firecracker graphs was studied in [1,2], respectively. Recently
Estrada-Moreno et al. [8] gave a generalization of the concept of metric basis, the notion of k-metric basis in graphs, and tight
bounds and closed formulae for the k-metric dimension of connected corona graphs [9] were also obtained. In this paper, we
obtain the metric dimension of circulant graphs and Harary graphs.

2. Circulant graphs

A circulant graph is a natural generalization of the double loop network and was first considered by Wong and Copper-
smith [29]. Circulant graphs have been used for decades in the design of computer and telecommunication networks; their
popularity is due to their optimal fault-tolerance and routing capabilities [4]. Theoretical properties of circulant graphs have
been studied extensively and surveyed by Bermond et al. [3]. Every circulant graph is a vertex transitive graph as well as a
Cayley graph. Most of the earlier research concentrated on using circulant graphs to build interconnection networks for dis-
tributed and parallel systems [3,4].

More formally, a circulant graph, denoted by Cðn;�f1;2; . . . ; jgÞ;1 6 j 6 bn=2c;n P 3, is defined as a graph with vertex set
V ¼ f0;1; . . . ;n� 1g and edge set E ¼ fði; jÞ : jj� ij � sðmod nÞ; s 2 f1;2; . . . ; jgg. It is clear that Cðn;�1Þ is an undirected cycle
Cn and Cðn;�f1;2; . . . ; bn=2cgÞ is the complete graph Kn. The cycle Cn is a subgraph of Cðn;�f1;2; . . . ; jgÞ, for every
j;1 6 j 6 bn=2c, and is sometimes referred to as the outer cycle.

Let F be a family of connected graphs Gn : F ¼ ðGnÞnP1 depending on n as follows: the order jVðGÞj ¼ uðnÞ and
limn!1uðnÞ ¼ 1. If there exists a constant C > 0 such that dimðGnÞ 6 C, for every n P 1, then we shall say that F has bounded
metric dimension [13].

The metric dimension of a class of circulant graphs Cðn;�f1;2gÞ has been determined in [24] as follows.

Theorem 2.1 [24]. Let G ¼ Cðn;�f1;2gÞ. Then,

dimðGÞ
¼ 3 when n � 0;2;3ðmod 4Þ
6 4 when n � 1ðmod 4Þ

�
:

Later Imran et al. [13] extended this study to the class of circulant graphs Cðn;�f1;2;3gÞ and proved the following
theorem.

Theorem 2.2 [13]. Let G ¼ Cðn;�f1;2;3gÞ. Then

dimðGÞ
¼ 4 when n � 2;3;4;5ðmod 6Þ
6 5 when n � 0ðmod 6Þ
6 6 when n � 1ðmod 6Þ

8><
>: :

In this article we discuss the metric dimension of G ¼ Cðn;�f1;2; . . . ; jgÞ, where j < bn=2c, and show that G has bounded met-
ric dimension. The integer j < bn=2c is arbitrary but is fixed throughout the paper.

2.1. Lower bound for the metric dimension of circulant graphs

To establish a lower bound and an upper bound of the metric dimension we make use of the following lemma, where all
integers are taken modulo n.

Lemma 2.3. Let G ¼ Cðn;�f1;2; . . . ; jgÞ;1 < j 6 bn=2c;n P 3, be a circulant graph of diameter k. Let V ¼ f0;1;2; . . . ;n� 1g.
Then two vertices i; iþ 1 are resolved by any of the vertices nþ iþ 1þ kj or nþ i� kj, where 1 6 k 6 k.

Proof. Let w be a vertex such that w – nþ iþ 1þ kj; 1 6 k 6 k. Both i and iþ 1 are at equal distance from w, i.e.,
dði;wÞ ¼ dðiþ 1;wÞ ¼ dji�wj

j e. From the vertex nþ iþ 1þ kj, vertices i and iþ 1 are at distance kþ 1 and k, respectively. Sim-
ilar arguments hold also for nþ i� kj. h

The following definitions will be useful.

48 C. Grigorious et al. / Applied Mathematics and Computation 248 (2014) 47–54



Download	English	Version:

https://daneshyari.com/en/article/4627264

Download	Persian	Version:

https://daneshyari.com/article/4627264

Daneshyari.com

https://daneshyari.com/en/article/4627264
https://daneshyari.com/article/4627264
https://daneshyari.com/

