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a b s t r a c t

In this paper, we study the strong convergence of viscosity iteration and modified viscosity
iteration process for strongly continuous semigroup of uniformly Lipschitzian asymptoti-
cally pseudocontractive mappings.
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1. Introduction

Analytical and numerical construction of fixed points of nonexpansive mappings, and of common fixed points of
nonexpansive semigroups, became in recent years important topics in Optimization Theory; please, see [1] Agarwal et al.,
Takahashi [2,3] Aoyama et al., Li et al. [4], Chang [5]. That is why they found various utilizations in a large number of applied
areas. We have in mind image recovery and signal processing; Byrne [6], Podilchuk and Mammone [7], Sezan and Stark [8],
Youla [9,10]. The most straightforward way to study nonexpansive mappings is to use contraction mapping to approximate
fixed point of nonexpansive mapping; Browder [11], Browder and Petryshyn [12], Deimling [13], Reich [14,15], Shou [16],
Suzuki [17], Xu [18].

Viscosity method provides an efficient approach to a large number of problems coming from different branches of Math-
ematical Analysis. A major feature of these methods is to provide as a limit of the solution of the approximate problems, a
particular solution of the original problem, called a viscosity solution. It has been successfully applied to various problems
coming from calculus of variations, minimal surface problems, plasticity theory and phase transition; Kohn and Sternberg
[19], Ladyzenskaya and Uralceva [20], Lions [21]. Various applications of the viscosity methods can be found in optimal con-
trol theory, singular perturbations, minimal cost problem; Attouch [22], Lions [23,24], and in stochastic control theory; Flem-
ing and McEneaney [25]. First abstract formulation of the properties of the viscosity approximation have been given by
Tykhonov [26] in 1963 when studying ill-posed problems; see Dontchev and Zolezzi [27] for details. The concept of viscosity
solution for Hamilton–Jacobi equations, which plays a crucial role in control theory, game theory and partial differential
equations has been introduced by Crandall and Lions [28]; also, see Cho and Kang [29].

In 2000, Moudafi [30] introduced a viscosity approximation method to compute fixed points of nonexpansive mappings.
Xu [31] studied further the viscosity approximation method for nonexpansive mapping in uniformly smooth Banach spaces,
while Song and Xu [33] studied the convergence of their implicit viscosity iterative scheme for nonexpansive semigroup.
Song and Chen [34] proposed implicit viscosity iterative scheme for a fixed Lipschitz strongly pseudocontractive mapping
and a continuous pseudocontractive mapping.
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In this paper, we introduce our iteration schemes for a strongly continuous asymptotically pseudocontractive semigroup.
The results presented in the paper extend, improve and generalize the corresponding results of Li et al. [4], Browder [11],
Reich [14], Moudafi [30], Xu [31,32], Song and Chen [34], Xu and Ori [35], Chidume [36], Li and Gu [37] and others.

2. Preliminaries

Let K be a nonempty subset of a real Banach space E and let J : E! 2E� is the normalized duality mapping defined by

JðxÞ ¼ ff 2 E� : x; fh i ¼ xk k fk k; xk k ¼ fk kg; 8x 2 E; ð2:1Þ

where E� denotes the dual space of E and �; �h i denotes the generalized duality pairing. It is well known that if E� is strictly
convex, then J is single valued. In the sequel, we shall denote the single valued normalized duality mapping by j.

We recall that a mapping T : K ! K is called

(i) contraction, if there exists a constant b 2 ð0;1Þ such that

Tx� Tyk k 6 b x� yk k; 8x; y 2 K;

(ii) nonexpansive, if

Tx� Tyk k 6 x� yk k; 8x; y 2 K;

(iii) pseudocontractive [12], if there exists jðx� yÞ 2 Jðx� yÞ such that

Tx� Ty; jðx� yÞh i 6 x� yk k2
; 8x; y 2 K; ð2:2Þ

(iv) strongly pseudocontractive, if there exists a constant b 2 ð0;1Þ and jðx� yÞ 2 Jðx� yÞ such that

Tx� Ty; jðx� yÞh i 6 b x� yk k2; 8x; y 2 K; ð2:3Þ

(v) asymptotically pseudocontractive [16], if there exists a sequence fkng# ½1;1Þ with limn!1 kn ¼ 1 and
jðx� yÞ 2 Jðx� yÞ such that

Tnx� Tny; jðx� yÞ
� �

6 kn x� yk k2; 8x; y 2 K; 8 n P 1; ð2:4Þ

(vi) uniformly L-Lipschitzian, if there exists a constant L > 0 such that

Tnx� Tny
�� �� 6 L x� yk k; 8x; y 2 K; 8 n P 1:

Let K be a closed convex subset of a Banach space E, and Rþ denote the set of nonnegative real numbers. A family
T ¼ fTðtÞ : t 2 Rþg of asymptotically pseudocontractive mappings from K into K is called strongly continuous semigroup
of asymptotically pseudocontractive mappings, Chidume [36], if the following conditions are satisfied:

(i) Tð0Þx ¼ x, for all x 2 K;
(ii) Tðsþ tÞx ¼ TðsÞTðtÞx, for all x 2 K and all s; t 2 Rþ;

(iii) for each x 2 K , the mapping t # TðtÞx is continuous for t 2 Rþ;
(iv) there exists fkng# ½1;1Þ with limn!1 kn ¼ 1 and jðx� yÞ 2 Jðx� yÞ such that

ðTðtnÞÞnx� ðTðtnÞÞny; jðx� yÞ
� �

6 kn x� yk k2; 8 tn P 0; 8x; y 2 K: ð2:5Þ

T is said to be strongly continuous semi-group of

(i) uniformly L-Lipschitzian if there exists L > 0 such that

ðTðtnÞÞnx� ðTðtnÞÞny
�� �� 6 L x� yk k; 8x; y 2 K; 8n P 1; 8 tn P 0;

(ii) uniformly asymptotically regular if

lim
n!1

ðTðtÞÞnþ1x� ðTðtÞÞnx
��� ���! 0; 8 t P 0; 8x 2 K:

T is said to have a fixed point if there exists x0 2 K such that TðtÞx0 ¼ x0 for all t P 0. We denote the set of fixed points of
T by FðT Þ ¼

T
t2RþFðTðtÞÞ.

For given u 2 K and each t 2 ð0;1Þ, define a contraction Tt : K ! K by

Ttx ¼ tuþ ð1� tÞTx; 8x 2 K:
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