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a b s t r a c t

For small volumes at the micrometer and nanometer level, classical continuum mechanics
cannot be used to capture experimentally observed phenomena, such as size effects. More-
over, dissipation is much less pronounced than that in the case of macroscopic volume ele-
ments. To remedy the situation, generalized continuum mechanics theories should be used
as an alternative to molecular dynamics simulations which do provide physical insight, but
may not be suitable for engineering applications and the formulation of related boundary
value problems. The present contribution is an example in this direction. An Euler–
Bernoulli beam model is constructed to study the vibration of a nanobeam subjected to
ramp-type heating. A generalized thermoelasticity theory with non-local deformation
effects and dual-phase-lag (DPL) or time-delay thermal effects is used to address this prob-
lem. An analytical technique based on Laplace transform is employed. The inverse of
Laplace transform is computed numerically using Fourier expansion techniques. The
effects of nonlocality, DPLs, and the ramping-time parameter on the lateral vibration, the
temperature, the displacement and the flexural moment of the nanobeam are discussed.
The results are shown quantitatively in corresponding graphs.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The theory of coupled thermoelasticity has been extended by Lord and Shulman [1], as well as Green and Lindsay [2] to
include a thermal relaxation time in the constitutive relations. The extension to the anisotropic case has been established by
Dhaliwal and Sherief [3]. Green and Naghdi [4] proposed a new generalized thermoelasticity theory by including the ther-
mal-displacement gradient among the independent constitutive variables. An important feature of this theory, which is not
present in other thermoelasticity theories, is that it does not accommodate dissipation of thermal energy.

The dual-phase-lag (DPL) model describes the interactions between phonons and electrons that occur on a microscopic
level and act as retarding sources causing a delayed response on the macroscopic scale [5,6]. This results to a modification of
the standard thermoelastic model where the classical Fourier law is replaced by a non-classical one involving two different
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time translations (time-delay parameters): a phase-lag (PL) for the heat flux sq and a PL for the temperature gradient sh. The
physical meaning and related experimental evidence for this modification have been established [7]. A Taylor series approx-
imation of the aforementioned modified Fourier law (together with the remaining field equations) leads to a complete sys-
tem of equations describing the DPL thermoelastic model. This model allows for the transmission of thermoelastic
disturbances in a wave-like manner if the approximation is linear with respect to sq and sh ð0 � sh < sqÞ or quadratic in
sq and linear in sh (sq > 0 and sh > 0). Thus, the theory is able to incorporate thermal pulse transmissions in a very logical
manner. Abouelregal and Abo-Dahab [8] studied the induced displacement, temperature and stress fields in an infinite non-
homogeneous elastic medium with a spherical cavity, in this context. Abouelregal [9] applied the DPL heat transfer model for
an isotropic solid sphere. The solution of the problem is carried out when the boundary of the sphere is maintained at con-
stant heat flux and the displacement of the surface is constrained. Such generalized considerations for modeling the thermo-
elastic response of materials and structures seem to have become important recently in the fields of microtechnology and
nanotechnology. In fact, micro/nano beams are now used as basic structural elements for new advanced devices of decreas-
ing size, as is briefly discussed below.

Micro-scale mechanical resonators are characterized by high sensitivity and fast response, and are widely used as sensors
and modulators. Nano-scale resonators have also attracted considerable attention recently due to their ever increasing and
promising nanotechnology-related applications. Accurate analysis of various effects on the characteristics of resonators, such
as resonant frequencies and quality factors, is crucial for designing high-performance nanoscale components. Many authors
have studied the vibration and heat transfer process of beams (e.g. Fang et al. [10], Huniti et al. [11]). Kidawa [12] considered
the problem of transverse vibrations of a beam induced by a mobile heat source, and provided an analytical solution using
the Green’s function method. Boley [13] analyzed the vibrations of a simply-supported rectangular beam subjected to a sud-
denly applied heat input distributed along its span. Manolis and Beskos [14] examined the thermally induced vibration of
structures consisting of beams and exposed to rapid surface heating. They have also studied the effects of damping and axial
loads on the structural response.

Nonlocal beam models have received increasing interest in the past few years. Nonlocal continuum mechanics theories
regard the stress state at a point as a function of the strain state in all points of the body, while classical continuum mechan-
ics assumes that the stress state at a given point is dependent uniquely on the strain state at that same point. Eringen’s non-
local elasticity theory [15], was developed in an effort to deal with this situation. Small length scale effects are accounted for
by incorporating an internal characteristic length, e.g. the length of the atomic bond (CAC bond for carbon materials) into the
stress–strain relationship. The dispersion curves of the nonlocal model are in excellent agreement with those of the Born–
Karman theory of lattice dynamics; the dislocation core and cohesive stress predicted by the nonlocal theory are close to
those known in the physics of solids [16,17].

Among all nano-objects, the mechanical behavior of nanotubes and nanobeams have been most widely investigated by
using this nonlocal theory. Peddieson et al. [18] illustrated how in the Bernoulli–Euler beam model, small scale effects man-
ifest themselves in the range of nano-meters. Sudak [19] applied nonlocal elasticity to study axial buckling of carbon nano-
tubes. Since then, a large number of researchers [20] have applied nonlocal continuum theories to model carbon nanotubes
or nanobeam-like structures. Duan and Wang [21] conducted a bending analysis of circular graphene sheets based on non-
local elasticity theory.

The basic difference between classical and nonlocal elasticity theory [22] lies on the definition of stress. In classical
elasticity, the stress at a point is a function of strain at that point only, whereas in nonlocal elasticity, the stress at any
point is a function of strains at all other points of the continuum. Hence, the nonlocal theory contains information about
long range forces of atoms or molecules and, thus, an internal length scale parameter should be introduced in the
formulation. An alternative size-dependent elasticity theory which was directly motivated by deformation processes at
the nanoscale is Aifantis one-internal length parameter gradient theory of elasticity (GRADELA). Since its original
publication in 1992 [23], a number of articles (e.g. [24–31] and references quoted therein) have been published showing
how GRADELA can eliminate stress/strain singularities from dislocation cores and crack tips, how it can be used to
interpret size effects, and also model wave dispersion, in agreement with experiments. The relation between generalized
gradient elasticity theory (involving the Laplacians of both stress and strain) and Eringen’s nonlocal elasticity theory has
been dealt with in [31]. In this connection, Aifantis’ original GRADELA model is a strain gradient theory, whereas Eringen’s
model is a stress gradient theory.

In the present paper, the vibration of a nanobeam resonator induced by a ramp-type heating is addressed within the
framework of a nonlocal (or stress gradient) thermoelasticity theory with DPL thermal effects. The Laplace transform method
is used to determine the lateral vibration, the temperature, the displacement and the bending moment of the nanobeam. The
effects due to nonlocality, phase lags and the ramping time parameter are studied. Numerical results are also presented to
illustrate the influence of these factors on the vibrational response of the nanobeam resonator.

2. The nonlocal DPL thermoelastic model

According to Eringen’s nonlocal elasticity theory [22], the stress at any reference point in the body depends not only on
the strain at this point but also on the strain at all points of the body. The relevant constitutive equation of nonlocal elasticity
for homogenous and isotropic elastic solids reads
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