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a b s t r a c t

In this paper, we intend to understand the influences of the spatial heterogeneity, crowding
effect and non-local infection caused by the movements of the latent mosquitoes on the
dynamics of dengue transmission. For this purpose, we modify the homogeneous system
provided in Esteva and Vargas (1998) to obtain a nonlocal and time-delayed reaction–dif-
fusion system with the Neumann condition on the boundary. Then the basic reproduction
number R0 is defined for the model system, and it can be obtained explicitly when all
model parameters are constants. Finally, we show that the global threshold dynamics of
the model system can be determined by R0.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Dengue disease is transmitted to humans by the bites of Aedes mosquitoes and it is a serious disease in the tropical
regions of the world. In order to understand the mechanisms of the spread of the disease, Esteva and Vargas [2] pro-
posed a simplified model for dengue disease where they considered one type of virus and ignored the disease-related
death rate. In [6], the authors modified the model proposed in [2] to incorporate the crowding effect in spatially heter-
ogeneous environments. Assume that X is a spatial habitat with the smooth boundary @X and m is the outward normal
to @X. Let SH; IH , and RH denote the number of the susceptible, infectious and immune class in the human population;
SV ; IV denote the number of the susceptible, infectious class in the mosquito population. Thus, NH :¼ SH þ IH þ RH and
NV :¼ SV þ IV represent the population sizes of humans and mosquitoes, respectively. The constants lb;ld, and cH stand
for the birth, death and recover rate of human species; A and lV denote the recruitment and the per capita mortality
rate of mosquitoes, respectively. The biting rate b of mosquitoes is the average number of bites per mosquito per
day. Mosquitoes bite not only human but also pets. Thus, we assume m is the number of alternative hosts available
as blood sources. Let bH be the transmission probability from infectious mosquitoes to susceptible humans; bV be the
transmission probability from infectious humans to susceptible mosquitoes. Then the dynamics of dengue fever was
described by the following system of differential equations [6]:
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@SH
@t ¼ dHDSH þ lbNH � cðxÞSHNH � bHðxÞbðxÞ

NHþmðxÞ SHIV � ldSH;

@IH
@t ¼ dHDIH þ bHðxÞbðxÞ

NHþmðxÞ SHIV � cðxÞIHNH � ðld þ cHÞIH;

@RH
@t ¼ dHDRH þ cHIH � cðxÞRHNH � ldRH; x 2 X; t > 0;
@SV
@t ¼ dVDSV þ AðxÞ � bV ðxÞbðxÞ

NHþmðxÞ SV IH � lV SV ;

@IV
@t ¼ dVDIV þ bV ðxÞbðxÞ

NHþmðxÞ SV IH � lV IV ;

@SH
@m ¼

@IH
@m ¼

@RH
@m ¼

@SV
@m ¼

@IV
@m ¼ 0; x 2 @X; t > 0:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð1Þ

Here, we consider a closed environment in the sense that the fluxes for each of these subpopulations are zero, and hence,
we have proposed the Neumann boundary conditions to the Eqs. (1) on the boundary. Furthermore, the crowding effect
terms (see, e.g., [5]) in the susceptible class, the infectious class and the immune class in the human population are respec-
tively given by

cðxÞSHNH; cðxÞIHNH and cðxÞRHNH:

Assume that the spatial dependent functions AðxÞ; bðxÞ; cðxÞ, mðxÞ; bHðxÞ; bV ðxÞ are positive; D is the usual Laplacian oper-
ator; dH > 0; dV > 0 denote the diffusion coefficients for humans and mosquitoes, respectively.

It was observed that mosquitoes infected by the dengue disease in one location can move freely in the habitat when this
individual becomes infectious. That is, mosquitoes may not stay at the same location in space during the incubation period
and the mobility of the individuals in the latent period will result in a delay term with spatial averaging on X. We point out
that those observations were also discussed in the previous papers [3,8–11,24]. To formulate this process with the latency
properly, we introduce the notion of infection age, denoting it by the variable a. The infected mosquito population is divided
into two epidemiological categories: latent (EV ) and infectious (IV ) classes. Let wðx; t; aÞ be the density of the mosquito pop-
ulation with infection age a at time t and location x. We adopt the standard model on describing age structured population
with spatial diffusion (see e.g. [12]), we arrive at

@wðx; t; aÞ
@t

þ @wðx; t; aÞ
@a

¼ dVDwðx; t; aÞ � lV wðx; t; aÞ: ð2Þ

Let s be the average incubation period. Then

EV ðx; tÞ ¼
Z s

0
wðx; t; aÞda; ð3Þ

and

IV ðx; tÞ ¼
Z 1

s
wðx; t; aÞda: ð4Þ

Integrating both sides of (2) from 0 to s, and from s to 1, respectively, we obtain

@EV ðx; tÞ
@t

¼ dVDEV ðx; tÞ � lV EV ðx; tÞ �wðx; t; sÞ þwðx; t;0Þ; ð5Þ

and

@IV ðx; tÞ
@t

¼ dVDIV ðx; tÞ � lV IV ðx; tÞ �wðx; t;1Þþwðx; t; sÞ: ð6Þ

Biologically, we may assume that wðx; t;1Þ ¼ 0. Since the recruitment of newly infected mosquitoes ðwðx; t;0ÞÞ is due to
the contact of susceptible mosquitoes and infectious humans, it follows that

wðx; t;0Þ ¼ bV ðxÞbðxÞ
NHðx; tÞ þmðxÞ SV ðx; tÞIHðx; tÞ: ð7Þ

It is easy to see that NH :¼ SH þ IH þ RH satisfies the following system equation.

@NH
@t ¼ dHDNH þ ðlb � ldÞNH � cðxÞN2

H; x 2 X; t > 0;
@NH
@m ¼ 0; x 2 @X; t > 0:

(
ð8Þ

The reaction–diffusion Eq. (8) is a logistic equation and it is known that (8) admits a unique positive steady state KðxÞ
such that (see, e.g. [7, page 506] and [25, Theorem 3.1.5 and the proof of Theorem 3.1.6]):

lim
t!1

NHðx; tÞ ¼ KðxÞ uniformly in x 2 �X; ð9Þ

for all solutions with nonnegative and nonzero initial datas provided that lb > ld. Biologically, we replace (7) by the follow-
ing equation
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