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a b s t r a c t

In this paper we consider a class of perturbed piecewise smooth systems. Applying the
method of first order Melnikov function we give a lower bound for the maximal number
of limit cycles bifurcated from a double homoclinic loop. As an application we construct
a piecewise quadratic system with quartic perturbation, which has 11 limit cycles bifur-
cated from such loop.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

The bifurcation theory is an important part of the qualitative theory of differential systems. The study of bifurcations from
singular points and periodic orbits is important for the analysis of many mathematical models, like, for instance, the pred-
ator–prey system, the Holling–Tanner model, the infection model (see [21,23,25] and the references therein), and many
other models. The objects of the main interest in such models are usually isolated periodic orbits, since they describe
auto-oscillating regimes of the system. It appears the main technique to study limit cycles is a perturbation of simple sys-
tems with annulus of periodic orbits, in particular, a perturbation of Hamiltonian systems. In the latter case an efficient tool
used to estimate the number of limit cycles is the so-called Melnikov function, see e.g. [8,15] and references given there. The
Melnikov function can be used to study the number of limit cycles bifurcated from a center, a homoclinic loop, a heteroclinic
loop or an annulus consisting of a family of periodic orbit. For instance, the authors of [24] proved that generic planar qua-
dratic Hamiltonian systems with the third degree polynomial perturbation can have eight small-amplitude limit cycles
around a center. Roussarie [20] studied the following system

_x ¼ Hy þ epðx; y; e; dÞ;
_y ¼ �Hx þ eqðx; y; e; dÞ;

�
ð1:1Þ

where Hðx; yÞ; pðx; y; e; dÞ; qðx; y; e; dÞ are analytic functions, e P 0 is small and d 2 D � Rm is a vector parameter with D being a
compact set. Under the assumption that the origin is a hyperbolic saddle, the author obtained the expansion of the Melnikov
function Mðh; dÞ near the homoclinic loop L0 as follows

Mðh; dÞ ¼ c0ðdÞ þ c1ðdÞh ln jhj þ c2ðdÞhþ c3ðdÞh2 ln jhj þ Oðh2Þ; 0 < �h� 1:
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Then the authors of [11] gave formulas for c1 and c2, and recently in [10] the formula for the coefficient c3 has been obtained.
The authors of [4] discussed bifurcations of periodic orbits of a class of planar systems with one switching line. They derived
an expression of the first order Melnikov function and applied it to study the number of limit cycles bifurcated from the
annulus.

To match the theoretic development and applications to models of real life phenomena, many researchers paid a lot of
attention to the area of piecewise smooth system, see monographs [1,5,14], articles [3,6,7,19] and references therein. It is
well-known that for smooth dynamical system (1.1) if Melnikov function Mðh; dÞ satisfies for some small jh�j > 0 the
condition

Mðh�; dÞ ¼ M0ðh�; dÞ ¼ M00ðh�; dÞ ¼ � � � ¼ Mk�1ðh�; dÞ ¼ 0; Mkðh�; dÞ– 0;

then the corresponding system has at most k limit cycles near Lh� for e > 0 sufficient small, and has at least one limit cycle if k
is odd, see Theorem 6.1 in [15]. A similar version for non-smooth systems was given in the paper [18] by Liu and Han. A
number of new results on the problem are obtained also in [2,12,16,17]. The authors of [16,17] discussed the piecewise
smooth systems with the origin as a center and a degenerated saddle (the definition can be found in [12]), respectively. Dif-
ferently, we treat the origin as a hyperbolic saddle in the unperturbed system of (1.1).

In this paper, we consider a piecewise near-Hamiltonian system of the form (1.1), where e > 0 is small and d 2 D � Rm is a
vector parameter, with D compact, and

Hðx; yÞ ¼ Hþðx; yÞ; x P 0;
H�ðx; yÞ; x < 0;

(

pðx; y; e; dÞ ¼
pþðx; y; e; dÞ; x P 0;
p�ðx; y; e; dÞ; x < 0;

�

qðx; y; e; dÞ ¼
qþðx; y; e; dÞ; x P 0;
q�ðx; y; e; dÞ; x < 0;

�
with H�; p�; q� being analytical functions defined on R2.

We call the analytic systems

_x ¼ Hþy þ epþðx; y; e; dÞ;
_y ¼ �Hþx þ eqþðx; y; e; dÞ;

(
ð1:2Þ

_x ¼ H�y þ ep�ðx; y; e; dÞ;
_y ¼ �H�x þ eq�ðx; y; e; dÞ;

�
ð1:3Þ

the right subsystem and the left subsystem, respectively.
For e ¼ 0, systems (1.1)–(1.3) become, respectively,

_x ¼ Hy;

_y ¼ �Hx;

�
ð1:4Þ

_x ¼ Hþy ;

_y ¼ �Hþx ;

(
ð1:5Þ

_x ¼ H�y ;
_y ¼ �H�x :

�
ð1:6Þ

We will suppose that
H(I) The origin is a hyperbolic saddle for both systems (1.5) and (1.6), and the equations H�ðx; yÞ ¼ 0 for �x P 0 define

two homoclinic loops L�0 with a critical point at the origin. See Fig. 1.1. Then Lþ0 and L�0 form a double homoclinic loop
L0 ¼ Lþ0

S
L�0 in system (1.4).

Further, denoting by L�h the orbits fH�ðx; yÞ ¼ h;�x P 0;h 2 ða�; bÞ;a� < 0 < bg we assume that for system (1.4).
H(II) There exist three families of periodic orbits fLþh jaþ < h < 0g; fL�h ja� < h < 0g and fLhj0 < h < bg where

Lh ¼ fLþh j0 < h < bg
S
fL�~h j0 < eh < bg. Note that the closed orbits L�h ja�<h<0 are located inside the closed loop L0 and L�h j0<h<b

are two curves with the beginning and ending points being both at y-axis. Moreover, for 0 < h < b we denote the orbit inter-
secting y-axis at AðhÞ ¼ ð0; aðhÞÞ and BðhÞ ¼ ð0; bðhÞÞ with bðhÞ < 0 < aðhÞ and að0Þ ¼ bð0Þ ¼ 0 by Lþh . Besides, we have

H�ðAðhÞÞ ¼ H�ðBðhÞÞ ¼ eh ð1:7Þ

for the definition of closed orbit Lh and denote LhjxP0 and Lhjx�0 by cAB and cBA, respectively. See Fig. 1.2.
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