FISEVIER

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Fault-tolerance of (n, k)-star networks $\stackrel{\text{to}}{\sim}$

Xiang-Jun Li a,b, Jun-Ming Xu b,*

- ^a School of Information and Mathematics, Yangtze University, Jingzhou, Hubei 434023, China
- ^b School of Mathematical Sciences, University of Science and Technology of China, Wentsun Wu Key Laboratory of CAS, Hefei 230026, China

ARTICLE INFO

Keywords: Combinatorics Fault-tolerant analysis (n,k)-Star graphs Connectivity h-Super connectivity

ABSTRACT

This paper considers a refined measure $\kappa_s^{(h)}$ for the fault-tolerance of a network and, for the generalized star network $S_{n,k}$, determines $\kappa_s^{(h)}(S_{n,k}) = n + h(k-2) - 1$ for $2 \le k \le n-1$ and $0 \le h \le n-k$, which implies that at least n+h(k-2)-1 vertices of $S_{n,k}$ have to be removed to get a disconnected graph without vertices of degree less than h. This work generalizes some known results. When the (n,k)-star graph is used to model the topological structure of a large-scale parallel processing system, this result can provide a more accurate measure for the fault tolerance of the system.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. An interconnection network can be modeled by a graph in which vertices correspond to processors and edges correspond to communication links

The connectivity $\kappa(G)$ of a graph G is defined as the minimum number of vertices whose deletion disconnects G. As an important measure for the fault-tolerance of a network, the larger connectivity κ is, the more reliable the network is. However, the definition of κ is implicitly assumed that any subset of system components is equally likely to be faulty simultaneously, which may not be true in real applications, thus connectivity κ underestimate the reliability of a network. To compensate such shortcoming, Harary [12] introduced the concept of the conditional connectivity by appending some requirements on the resulting graph. In this trend, Esfahanian [11] proposed the concept of the restricted connectivity, Latifi et al. [16] generalized it to the restricted h-connectivity which can measure fault tolerance of an interconnection network more accurately than the classical connectivity κ . The concepts stated here are slightly different from theirs.

For a given nonnegative integer h, a subset S of vertices of a connected graph G is called an h-super vertex-cut, or h-cut for short, if G-S is disconnected and has the minimum degree at least h. The h-super connectivity of G, denoted by $\kappa_s^{(h)}(G)$, is defined as the minimum cardinality over all h-cuts of G. Since a complete graph K_n is nonseparable, $\kappa_s^{(h)}(K_n)$ does not exist for any h with $0 \le h \le n-1$. Furthermore, if G is not a complete graph then $\kappa_s^{(0)}(G) = \kappa(G)$; for $h \ge 1$, if $\kappa_s^{(h)}(G)$ exists, then $\kappa_s^{(h-1)}(G) \le \kappa_s^{(h)}(G)$. For any graph G and integer h, determining $\kappa_s^{(h)}(G)$ is quite difficult. In fact, the existence of $\kappa_s^{(h)}(G)$ is an open problem so far when $h \ge 1$. Only a little knowledge of results have been known on $\kappa_s^{(h)}$ for particular classes of graphs and small h's.

E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

^{*} The work was supported by NNSF of China (No. 61272008).

^{*} Corresponding author.

As a topological structure of interconnection networks, the star graph S_n , proposed by Akers and Krishnamurthy [1], is an attractive alternative to the hypercube as an interconnection network, and has superior degree and diameter compared to the comparable hypercube as well as it is highly hierarchical and symmetrical [9]. However, the number of vertices of an *n*dimensional star is n!, there is a large gap between n! and (n+1)! if S_n is extended to S_{n+1} . To achieve scalability, Chiang and Chen [7] generalized the star graph S_n to the (n,k)-star graph $S_{n,k}$, which preserves many ideal properties of the star graph [8]. Since then the (n, k)-star graph has received considerable attention in the literature [2,3,5,6,4,10,14,15,19,18,22,24–27].

This paper is concerned about $\kappa_s^{(h)}$ for the (n,k)-star graph $S_{n,k}$. For k=n-1, $S_{n,n-1}$ is isomorphic to a star graph S_n , Hu and Yang [13], Nie et al. [20] and Rouskovet al. [21], independently, determined $\kappa_s^{(1)}(S_n) = 2n - 4$ for $n \ge 3$. Wan and Zhang [23] showed $\kappa_{\varsigma}^{(2)}(S_n) = 6n - 18$ for $n \ge 4$. Yang et al. [26] proved that if $2 \le k \le n - 2$ then $\kappa_{\varsigma}^{(1)}(S_{n,k}) = n + k - 3$ for $n \ge 3$ and $\kappa_s^{(2)}(S_{n,k}) = n + 2k - 5 \text{ for } n \ge 4.$

We, in this paper, will generalize these results by proving that $\kappa_s^{(n)}(S_{n,k}) = n + h(k-2) - 1$ for $2 \le k \le n-1$ and $0 \le h \le n - k$.

The main proof of this result is in Section 3. In Section 2, we recall the structure of $S_{n,k}$ and some lemmas used in our proofs. Conclusions and some remarks are in Section 4.

2. Definitions and lemmas

For a given integer n with $n \ge 2$, let $I_n = \{1, 2, ..., n\}$, $I'_n = \{2, ..., n\}$. For an integer k with $1 \le k \le n-1$, let $P(n,k) = \{p_1p_2 \dots p_k : p_i \in I_n, p_i \neq p_j, 1 \leqslant i \neq j \leqslant k\}$, the set of k-permutations on I_n . Clearly, $|P(n,k)| = \frac{n!}{(n-k)!}$

Definition 2.1. (Chiang et al. [7]) The (n,k)-star graph $S_{n,k}$ is a graph with vertex-set P(n,k). The adjacency is defined as follows: a vertex $p = p_1 p_2 \dots p_i \dots p_k$ is adjacent to a vertex

- (a) $p_i p_2 \dots p_{i-1} p_1 p_{i+1} \dots p_k$, where $i \in I_k'$ (swap p_1 with p_i). (b) $p_1' p_2 p_3 \dots p_k$, where $p_1' \in I_n \setminus \{p_i : i \in I_k\}$ (replace p_1 by p_1').

The vertices of type (a) are referred to as swap-neighbors of the vertex p and the edges between them are referred to as swap-edges or i-edges. The vertices of type (b) are referred to as unswap-neighbors of the vertex p and the edges between them are referred to as unswap-edges. Clearly, every vertex in $S_{n,k}$ has k-1 swap-neighbors and n-k unswap-neighbors. Usually, if $p = p_1 p_2 \dots p_k$ is a vertex in $S_{n,k}$, we call p_i the *i*th *bit* of p for each $i \in I_k$.

It has been known that the (n,k)-star graph $S_{n,k}$ is a vertex transitive graph with order $\frac{n!}{(n-k)!}$ and regular degree n-1 (see Chiang et al. [7]). In addition, $S_{n,n-1}$ is isomorphic to the star graph S_n , and $S_{n,1}$ is isomorphic to the complete graph K_n . Fig. 1 shows the (4,2)-star $S_{4,2}$ and the (4,3)-star $S_{4,3}$.

Lemma 2.2. For any $\alpha = p_2 p_3 \dots p_k \in P(n, k-1)$ $(k \ge 2)$, let $V_\alpha = \{p_1 \alpha : p_1 \in I_n \setminus \{p_i : i \in I'_k\}\}$. Then the subgraph of $S_{n,k}$ induced by V_{α} is a complete graph of order n-k+1, denoted by K_{n-k+1}^{α} .

Proof. For any two vertices $p_1 \alpha$ and $p'_1 \alpha$ in V_{α} with $p_1 \neq p'_1$, by the condition (b) of Definition 2.1, $p_1 \alpha$ and $p'_1 \alpha$ are linked in $S_{n,k}$ by an unswap-edge. Thus, the subgraph of $S_{n,k}$ induced by V_{α} is a complete graph K_{n-k+1} . \square

Fig. 1. The (4,2)-star $S_{4,2}$ and the (4,3)-star $S_{4,3}$

Download English Version:

https://daneshyari.com/en/article/4627306

Download Persian Version:

https://daneshyari.com/article/4627306

<u>Daneshyari.com</u>