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a b s t r a c t

This paper considers a refined measure jðhÞs for the fault-tolerance of a network and, for the
generalized star network Sn;k , determines jðhÞs ðSn;kÞ ¼ nþ hðk� 2Þ � 1 for 2 6 k 6 n� 1 and
0 6 h 6 n� k, which implies that at least nþ hðk� 2Þ � 1 vertices of Sn;k have to be
removed to get a disconnected graph without vertices of degree less than h. This work gen-
eralizes some known results. When the ðn; kÞ-star graph is used to model the topological
structure of a large-scale parallel processing system, this result can provide a more accu-
rate measure for the fault tolerance of the system.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. An
interconnection network can be modeled by a graph in which vertices correspond to processors and edges correspond to
communication links.

The connectivity jðGÞ of a graph G is defined as the minimum number of vertices whose deletion disconnects G. As an
important measure for the fault-tolerance of a network, the larger connectivity j is, the more reliable the network is. How-
ever, the definition of j is implicitly assumed that any subset of system components is equally likely to be faulty simulta-
neously, which may not be true in real applications, thus connectivity j underestimate the reliability of a network. To
compensate such shortcoming, Harary [12] introduced the concept of the conditional connectivity by appending some
requirements on the resulting graph. In this trend, Esfahanian [11] proposed the concept of the restricted connectivity, Latifi
et al. [16] generalized it to the restricted h-connectivity which can measure fault tolerance of an interconnection network
more accurately than the classical connectivity j. The concepts stated here are slightly different from theirs.

For a given nonnegative integer h, a subset S of vertices of a connected graph G is called an h-super vertex-cut, or h-cut for

short, if G� S is disconnected and has the minimum degree at least h. The h-super connectivity of G, denoted by jðhÞs ðGÞ, is

defined as the minimum cardinality over all h-cuts of G. Since a complete graph Kn is nonseparable, jðhÞs ðKnÞ does not exist

for any h with 0 6 h 6 n� 1. Furthermore, if G is not a complete graph then jð0Þs ðGÞ ¼ jðGÞ; for h P 1, if jðhÞs ðGÞ exists, then

jðh�1Þ
s ðGÞ 6 jðhÞs ðGÞ. For any graph G and integer h, determining jðhÞs ðGÞ is quite difficult. In fact, the existence of jðhÞs ðGÞ is an

open problem so far when h P 1. Only a little knowledge of results have been known on jðhÞs for particular classes of graphs
and small h’s.
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As a topological structure of interconnection networks, the star graph Sn, proposed by Akers and Krishnamurthy [1], is an
attractive alternative to the hypercube as an interconnection network, and has superior degree and diameter compared to the
comparable hypercube as well as it is highly hierarchical and symmetrical [9]. However, the number of vertices of an n-
dimensional star is n!, there is a large gap between n! and ðnþ 1Þ! if Sn is extended to Snþ1. To achieve scalability, Chiang
and Chen [7] generalized the star graph Sn to the ðn; kÞ-star graph Sn;k, which preserves many ideal properties of the star graph
[8]. Since then the ðn; kÞ-star graph has received considerable attention in the literature [2,3,5,6,4,10,14,15,19,18,22,24–27].

This paper is concerned about jðhÞs for the ðn; kÞ-star graph Sn;k. For k ¼ n� 1; Sn;n�1 is isomorphic to a star graph Sn, Hu and

Yang [13], Nie et al. [20] and Rouskovet al. [21], independently, determined jð1Þs ðSnÞ ¼ 2n� 4 for n P 3. Wan and Zhang [23]

showed jð2Þs ðSnÞ ¼ 6n� 18 for n P 4. Yang et al. [26] proved that if 2 6 k 6 n� 2 then jð1Þs ðSn;kÞ ¼ nþ k� 3 for n P 3 and

jð2Þs ðSn;kÞ ¼ nþ 2k� 5 for n P 4.
We, in this paper, will generalize these results by proving that jðhÞs ðSn;kÞ ¼ nþ hðk� 2Þ � 1 for 2 6 k 6 n� 1 and

0 6 h 6 n� k.
The main proof of this result is in Section 3. In Section 2, we recall the structure of Sn;k and some lemmas used in our

proofs. Conclusions and some remarks are in Section 4.

2. Definitions and lemmas

For a given integer n with n P 2, let In ¼ f1;2; . . . ;ng; I0n ¼ f2; . . . ;ng. For an integer k with 1 6 k 6 n� 1, let
Pðn; kÞ ¼ fp1p2 . . . pk : pi 2 In; pi – pj; 1 6 i – j 6 kg, the set of k-permutations on In. Clearly, jPðn; kÞj ¼ n!

ðn�kÞ!.

Definition 2.1. (Chiang et al. [7]) The ðn; kÞ-star graph Sn;k is a graph with vertex-set Pðn; kÞ. The adjacency is defined as
follows: a vertex p ¼ p1p2 . . . pi . . . pk is adjacent to a vertex

(a) pip2 . . . pi�1p1piþ1 . . . pk, where i 2 I0k (swap p1 with pi).
(b) p01p2p3 . . . pk, where p01 2 In n fpi : i 2 Ikg (replace p1 by p01).

The vertices of type ðaÞ are referred to as swap-neighbors of the vertex p and the edges between them are referred to as
swap-edges or i-edges. The vertices of type ðbÞ are referred to as unswap-neighbors of the vertex p and the edges between them
are referred to as unswap-edges. Clearly, every vertex in Sn;k has k� 1 swap-neighbors and n� k unswap-neighbors. Usually,
if p ¼ p1p2 . . . pk is a vertex in Sn;k, we call pi the ith bit of p for each i 2 Ik.

It has been known that the ðn; kÞ-star graph Sn;k is a vertex transitive graph with order n!
ðn�kÞ! and regular degree n� 1 (see

Chiang et al. [7]). In addition, Sn;n�1 is isomorphic to the star graph Sn, and Sn;1 is isomorphic to the complete graph Kn. Fig. 1
shows the ð4;2Þ-star S4;2 and the ð4;3Þ-star S4;3.

Lemma 2.2. For any a ¼ p2p3 . . . pk 2 Pðn; k� 1Þ ðk P 2Þ, let Va ¼ fp1a : p1 2 In n fpi : i 2 I0kgg. Then the subgraph of Sn;k

induced by Va is a complete graph of order n� kþ 1, denoted by Ka
n�kþ1.

Proof. For any two vertices p1a and p01a in Va with p1 – p01, by the condition ðbÞ of Definition 2.1, p1a and p01a are linked in
Sn;k by an unswap-edge. Thus, the subgraph of Sn;k induced by Va is a complete graph Kn�kþ1. h

Fig. 1. The (4,2)-star S4;2 and the (4,3)-star S4;3
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