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a b s t r a c t

In this work, we apply the fractional order theory of thermoelasticity to a 2D problem for a
half-space. The surface of the half-space is taken to be traction free and is subject to
heating. There are no body forces or heat sources affecting the medium. Laplace and
exponential Fourier transform techniques are used to solve the problem. The inverse
Laplace transforms are obtained using a numerical technique.

The predictions of the theory are discussed and compared with those for the generalized
theory of thermoelasticity. We also study the effect of the fractional derivative parameter
on the behavior of the solution. Numerical results are computed and represented
graphically for the temperature, displacement and stress distributions.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Lord and Shulman [1] introduced the theory of generalized thermoelasticity with one relaxation time by using the
Maxwell–Cattaneo law of heat conduction instead of the conventional Fourier’s law. The heat equation associated with this
theory is hyperbolic and hence eliminates the paradox of infinite speeds of propagation inherent in both the uncoupled and
the coupled theories of thermoelasticity. This theory was extended to thermoelastic diffusion in [2], to thermoviscoelasticity
in [3] and to micropolar media in [4]. Exact solution for a problem of a spherical cavity was obtained by Sherief and Saleh [5].
Some problems for a penny shaped crack and a mode I crack were solved by Sherief and El-Maghraby [6,7].

Fractional calculus has been used successfully to modify many existing models of physical processes. Caputo and Mainardi
[8,9] and Caputo [10] found good agreement with experimental results when using fractional derivatives for description of
viscoelastic materials and established the connection between fractional derivatives and the theory of linear viscoelasticity.

The solution obtained by using ordinary derivatives predicts an instantaneous response while that obtained by using
fractional derivatives predicts a retarded response that depends on the history of the applied causes. This is more in accord
with physical observations [11].

The general space–time-fractional heat conduction equation in the one-dimensional case has been formulated by Goren-
flo et al. [12]. Povstenko [13] made a review of thermoelasticity that uses fractional heat conduction equation. The theory of
thermal stresses based on the heat conduction equation with the Caputo time-fractional derivative is used by Povstenko [14]
to investigate thermal stresses in an infinite body with a circular cylindrical hole. Povstenko proposed and investigated new
models that use fractional derivative in [15,16].

The fractional order theory of thermoelasticity was derived by Sherief et al. [17]. It is a generalization of both the coupled
and the generalized theories of thermoelasticity. Sherief and Abd El Latief [18,19] have solved a 1D problems for a half space
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and for spherical cavity in this theory, studied the effect of the fractional derivative parameter on fractional thermoelastic
material with variable thermal conductivity [20] and applied this theory to a 1D problem for a half-space overlaid by a thick
layer of a different materials [21].

Ezzat [22] introduced a heat conduction law with time-fractional derivative to formulate a mathematical model of mag-
neto-thermoelasticity theory. Ezzat and El-Karamany [23] solved a one-dimensional application for a conducting half-space
by using a fractional mathematical model of magneto-thermoelasticity.

2. Formulation of the Problem

We consider a homogeneous isotropic thermoelastic solid occupying the half-space y P 0. The y-axis is taken perpendic-
ular to the bounding plane pointing inward. We also assume that the initial state of the medium is quiescent. The surface of
this medium is traction free and subject to heating on the surface of intensity r(x, t).

Due to the physics of the problem, all relevant quantities will be functions of x, y and t only. The displacement vector u
will have two components only u, v in the x and y directions, respectively.

The equation of motion, in the absence of body forces, has the form [17]

q
@2u
@ t2 ¼ ðkþ lÞgradeþ lr2u� cgradT; ð1Þ

where q is the density, k, l are Lamé’s constants, T is the absolute temperature and c is a material constant given by
c ¼ ð3kþ 2lÞat where at is the coefficient of linear thermal expansion. r2 is the two-dimensional Laplace’s operator in
Cartesian coordinates. e is the cubical dilatation, given by

e ¼ divu ¼ @ u
@ x
þ @ v
@ y

: ð2Þ

The equation of energy, in the absence of heat sources, can be written as [17]

kr2T ¼ @

@ t
1þ s0

@a

@ ta

� �
ðqCET þ cT0eÞ ð3Þ

CE is the specific heat at constant strain, s0 is a constant, k is the thermal conductivity. The time fractional derivative of order
a used is taken to be in the sense of Caputo fractional derivative, 0 6 a 6 1. T0 is a reference temperature assumed to be such
that jðT � T0Þ=T0j � 1.

These equations are supplemented by the constitutive equations [17]

rij ¼ l @ ui

@ xj
þ @ uj

@ xi

� �
þ ðke� cðT � T0ÞÞdij ð4Þ

where rij are the components of the stress tensor and dij is the Kronecker delta.
We shall use the following non-dimensional variables:

X0 ¼ cgx y0 ¼ cgy t0 ¼ c2g t u0 ¼ cgu;

v 0 ¼ cgv s00 ¼ c2aga s0 h ¼ cðT � T0Þ
kþ 2l

r0ij ¼
rij

l
;

where g ¼ qCE=k, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
.

In terms of the above non-dimensional variables, Eq. (2) retains its form while Eqs. (1), (3) and (4) take the forms (drop-
ping the primes for convenience)

b2 @
2u
@ t2 ¼ ðb

2 � 1Þgradeþr2u� b2 gradh ð5Þ

r2h ¼ @

@ t
1þ s0

@a

@ ta

� �
ðhþ eeÞ; ð6Þ

rij ¼
@ ui

@ xj
þ @ uj

@ xi

� �
þ ððb2 � 2Þe� b2hÞdij; ð7Þ

where b2 ¼ ðkþ 2lÞ=l and e ¼ T0c2=½qCEðkþ 2lÞ�.
Eq. (5) has two components:

b2 @
2u
@ t2 ¼ ðb

2 � 1Þ @ e
@ x
þr2u � b2 @ h

@ x
; ð8Þ
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