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a b s t r a c t

The constants of Landau and Lebesgue are defined, for all integers n P 0, in order, by
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which play important roles in the theories of complex analysis and Fourier series, respec-
tively. Diverse inequalities and approximations for these constants have been investigated
and developed by many authors. Here, in this paper, we establish new asymptotic expan-
sions for the constants Gn and Ln=2 of Landau and Lebesgue, respectively, in terms of the dig-
amma and polygamma functions. Based on our expansion for the Landau constants Gn, we
present new bounds for the Landau constants Gn in terms of the digamma and polygamma
functions. We also establish inequalities for the Lebesgue constants Ln=2, which are applied
to derive an asymptotic expansion for Ln=2 in terms of 1=ðnþ 1Þ. Furthermore, by giving
numerical calculations to be compared, among several developed asymptotic expansions
for the constants Gn and Ln=2, it is shown that our expansions presented here would be best
ones.

� 2014 Published by Elsevier Inc.

1. Introduction

The Landau constants are defined by

Gn ¼
Xn
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n 2 N0 :¼ N [ f0g; N :¼ f1;2;3; . . .gð Þ; ð1:1Þ

which play an important role in the theory of complex analysis. More precisely, in 1913, Landau [21] proved that if
f ðzÞ ¼

P1
k¼0akzk is an analytic function in the unit disc D :¼ fz 2 C : jzj < 1g;C being the set of complex numbers, which sat-

isfies jf ðzÞj < 1 for all z 2 D, then the following optimal bounds hold true:
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The Lebesgue constants are defined by
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which play an important role in the theory of Fourier series. More precisely, in 1906, Lebesgue [22] proved the following
result: Assume a function f is integrable on the interval ½�p;p� and Snðf ; xÞ is the nth partial sum of the Fourier series of f.
That is,
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where the empty sum is (as usual, throughout this paper) understood to be nil. If jf ðxÞj 6 1 for all x 2 ½�p;p�, then

Snðf ; xÞ 6 Ln n 2 N0ð Þ: ð1:4Þ

It is noted that Ln is the smallest possible constant for which the inequality (1.4) holds true for all continuous functions f
on ½�p;p�.

Diverse inequalities and approximations for the constants of Landau and Lebesgue have been investigated and developed
by many authors. In this paper, we establish new asymptotic expansions for the constants Gn and Ln=2 of Landau and Lebes-
gue, respectively, in terms of the digamma and polygamma functions. Based on our expansion for the Landau constants Gn

here, we present new bounds for the Landau constants Gn in terms of the digamma and polygamma functions. We also estab-
lish inequalities for the Lebesgue constants Ln=2, which are shown to be applied to derive an asymptotic expansion for Ln=2 in
terms of 1=ðnþ 1Þ. Furthermore, by giving numerical calculations to be compared, among several developed asymptotic
expansions for the constants Gn and Ln=2, it is shown that our expansions presented here would be best ones.

For this purpose, we begin by recalling the familiar (Euler’s) gamma function CðzÞ defined by

CðzÞ ¼
Z 1

0
tz�1e�tdt RðzÞ > 0ð Þ; ð1:5Þ

which is one of the simplest and most important special functions and has several other important equivalent forms (see,
e.g., [32, Section 1.1]), knowledge of whose properties is a prerequisite for the study of many other special functions. The
gamma function CðzÞ arises in many areas of mathematics such as applied mathematics as well as mathematical analysis.
The origin, history, and development of the gamma function CðzÞ are described very nicely by Davis [14].

The logarithmic derivative of the gamma function CðzÞ:

wðzÞ ¼ d
dz
fln CðzÞg ¼ C0ðzÞ

CðzÞ or ln CðzÞ ¼
Z z

1
wðtÞdt ð1:6Þ

is known as the psi (or digamma) function. The successive derivatives of the psi function wðzÞ:

wðnÞðzÞ :¼ dn

dzn
fwðzÞg ðn 2 NÞ ð1:7Þ

are called the polygamma functions. In particular, the functions w0ðzÞ and wð2ÞðzÞ are called the trigamma and tetragamma
functions (see, e.g., [1, p. 260]).

The following lemma is required in the sequel.

Lemma 1.1. ([18,34]). Brouncker found the following remarkable continued fraction formula:
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Very recently, Granath [18] derived the asymptotic expansions for the Landau constants (1.1) and related inequalities by
using Brouncker’s continued fraction formula (1.8).

From (1.8), it is easy to find the following inequality (see, cf., [18, pp. 741–742]):
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