
Power law approximations for radioactive decay chains

Frank Massey ⇑, Jeffrey Prentis
University of Michigan – Dearborn, Dearborn, MI 48128, United States

a r t i c l e i n f o

Keywords:
Radioactive decay chain
Power law
Bateman’s formula
Approximations for decay chains
Error bound
Exponential convolution

a b s t r a c t

Consider a radioactive decay chain X1 ! � � � ! Xn ! and let NnðtÞ be the amount of Xn at
time t. This paper establishes error bounds for small and intermediate time approximations
to NnðtÞ including the power-law approximation NnðtÞ � Ctm�1 for smþ1 << t << sm where
sj is the jth largest half-life. The approximations shed light on the qualitative behavior of
NnðtÞ and are useful for reducing the roundoff error when computing NnðtÞ for small t
which is a problem with the usual formula. The error bounds allow one to find the range
of t for which these approximations can be used with a given degree of precision.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with radioactive decay chains X1 ! X2 ! � � � ! Xn ! where a fraction bj of the nuclide Xj decays
into Xjþ1 with decay constant kj and half-life Tj ¼ lnð2Þ=kj. The remaining fraction 1� bj of Xj decays with the same decay
constant kj into a nuclide other than Xjþ1. If Xn is stable then kn ¼ 0. Let NjðtÞ be that portion of the amount of Xj present
at time t that has been produced by decays following the chain. The NjðtÞ satisfy the radioactive decay equations [1, p. 172]:

dN1=dt ¼ �k1N1

dNj=dt ¼ bj�1kj�1Nj�1 � kjNj for j P 2
ð1Þ

If Njð0Þ ¼ 0 for j P 2 then NnðtÞ is given by

NnðtÞ ¼ N1ð0ÞanEnðt; k1; . . . ; knÞ ð2Þ

where

an ¼ b1b2 � � � bn�1k1k2 � � � kn�1 ð3Þ

and the function Erðt;a1; . . . ;arÞ is the convolution of exponential functions e�aj t , i.e.

Erðt; a1; . . . ;arÞ ¼ e�a1t � � � � � e�ar t ð4Þ

Here ⁄ denotes convolution, i.e. gðtÞ � hðtÞ ¼
R t

0 gðsÞhðt � sÞds for t P 0. Erðt;a1; . . . ;arÞ is a symmetric function of the aj since
convolution is commutative and associative. If the aj are distinct, one has

Erðt; a1; . . . ;arÞ ¼
Xr

j¼1

Cje�aj t ð5Þ
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Cj ¼
Yr

i¼1
i–j

ai � aj
� ��1 ð6Þ

The formula (2) coupled with (5) was originally established by Bateman [2] using Laplace transforms. Since then a
number of other interesting derivations of (2) have been given [3–9]. When some of the aj are equal, (5) is more complicated
[10–12].

The approximations in this paper address two problems with (5). First, it is hard to see the behavior of NnðtÞ from (5)
except for times on the order of the largest half-life. Second, round-off errors can be encountered when (5) is used to
compute NnðtÞ for times t that are small compared to the largest half-life.

We begin by describing how the approximations in this paper fill in missing knowledge about NnðtÞ. In doing this we look
at three previously known properties of NnðtÞ. The first of these is that NnðtÞ is a log-concave function, i.e. ln½NnðtÞ� is a con-
cave function. This is because the convolution of log-concave functions is again log-concave [13]. In particular, if kn > 0 then
NnðtÞ increases from zero to a maximum and then decreases back down to zero as t goes from zero to infinity.

The second known property of NnðtÞ is that if t is small compared to all the half-lives Tj ¼ lnð2Þ=kj, then

NnðtÞ � N1ð0Þan
tn�1

ðn� 1Þ! ð7Þ

This approximation is used both in applications to radioactivity (see [14, p. 24] and [15, pp. 83, 87]) and reliability (see [4,
p. 291]). The relative error in (7) is less than �kt where �k is the mean of k1; . . . ; kn, i.e.

Nn tð Þ � N1 0ð Þan
tn�1

n� 1ð Þ!

����
���� 6 �ktN1ð0Þan

tn�1

n� 1ð Þ! ð8Þ

This inequality follows from the following upper and lower bound for EnðtÞ ¼ Enðt; k1; . . . ; knÞ

ð1� �ktÞ tn�1

n� 1ð Þ! 6 EnðtÞ 6
tn�1

n� 1ð Þ! ð9Þ

which is proved in [4, pp. 289–290]. It assumes the kj are non-negative and it implies j EnðtÞ � tn�1=ðn� 1Þ! j 6 �ktn=ðn� 1Þ!.
Multiplying by N1ð0Þan proves (8). Thus, the relative error in (7) will be less than e if t < e=�k and (7) will be good if t is small
compared to the half-lives of all of X1; . . . ;Xn. Another small time approximation that usually holds for a larger range of val-
ues of t than (7) is the following.

Approximation 1. If t is small, then

NnðtÞ � N1ð0Þan
tn�1e��kt

ðn� 1Þ! ð10Þ

We have not seen precisely this approximation in the literature, but there are similar ones. For example, [4, p. 291] con-
siders the case kn ¼ 0 and uses the mean of k1; . . . ; kn�1 instead of �k in the exponent. In [16, p. 12] an example is considered
where n ¼ 2 and k1 and k2 are close to together and which uses k2 instead of �k in the exponent; see Example 2 in Section 6.
Theorem 1 in Section 2 has an error bound for Approximation 1 that shows that the smaller the variance of the kj is the larger
the interval t < t� is for which (10) holds with a given degree of precision.

The third known property of NnðtÞ is its large time behavior. If Tp ¼ lnð2Þ=kp is the largest half-life (where p is between 1
and n) and if t is large compared to all the half-lives except Tp, then (5) implies NnðtÞ � N1ð0ÞanCpe�kpt . In [17, Theorem 3] this

is extended as follows. Let Tq ¼ lnð2Þ=kq be the second largest half-life and h ¼
Q

j2J kj � kp
� ��1 where J ¼ fj : 1 6 j 6 n

and j – p; qg. If t is large compared to the third largest half life, then NnðtÞ � N1ð0Þanh
�1E2ðt; kp; kqÞ where

E2ðt; kp; kqÞ ¼ ðe�kpt � e�kqtÞ=ðkq � kpÞ. Implicit in this approximation is the fact that the value sn of t where NnðtÞ is a maximum
is close to the value s2 ¼ lnðkq=kpÞ=ðkq � kpÞ of t where E2ðt; kp; kqÞ is maximum, i.e. one has

Approximation 2. If l2 � l3 then sn � s2.

Theorem 2 in Section 2 gives an error bound for this approximation. This approximation, along with the others in this
paper, is illustrated in Example 1 in Section 6.

To summarize, the behavior of NnðtÞ for ‘‘small’’ t and ‘‘large’’ t and its log-concavity is known. The remaining approxima-
tions in this paper shed light on the behavior of NnðtÞ for values of t between small t and large t. To state these approxima-
tions we sort the decay constants kj and half-lives Tj in order. Let

l1 6 l2 6 � � � 6 ln be the values k1; . . . ; kn arranged in increasing order
S1 P S2 P � � �P Sn be the values T1; . . . ; Tn arranged in decreasing order

am ¼ b1b2 ���bn�1l1l2 ���lm
kn

with l1
kn

replaced by one if kn ¼ 0
EnðtÞ ¼ Enðt; k1; . . . ; knÞ ¼ Enðt; l1; . . . ;lnÞ

9>>>=
>>>;

ð11Þ
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