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a b s t r a c t

This paper considers robust semiparametric smooth-threshold generalized estimating equa-
tions for the analysis of longitudinal data based on the modified Cholesky decomposition and
B-spline approximations. The proposed method can automatically eliminate inactive predic-
tors by setting the corresponding parameters to be zero, and simultaneously estimate the
mean regression coefficients, generalized autoregressive coefficients and innovation vari-
ances. In order to overcome the outliers in either the response or/and the covariate domain,
we use a bounded score function and leverage-based weights to achieve better robustness.
Moreover, the proposed estimators have desired large sample properties including consis-
tency and oracle property. Finally, Monte Carlo simulation studies are conducted to investi-
gate the robustness and efficiency of the proposed method under different contaminations.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Longitudinal data sets are common in medical and public health studies, the significant feature of it is repeated measures
over a certain period of time. Liang and Zeger [12] proposed generalized estimating equations (GEEs) which are taken as a
milestone in the development of methodology for longitudinal data analysis. Partial linear models (PLMs) include a nonpara-
metric function and linear part, which are more flexible and more interpretable than linear models and nonparametric mod-
els respectively. Wang et al. [24] considered marginal generalized semiparametric partially linear models for clustered data
and proposed profile-type estimating equation, which differs from a standard marginal generalized estimating equation
model [12] mainly through introducing the nonparametric component. However, these methods mentioned above are not
robust, since its estimates are sensitive to potential outliers and influential observations. Hence, to seek a more robust
method against outliers is a very important issue in longitudinal studies. In recent years, many authors studied the influence
of outliers to the estimate and had developed many robust methods. An incomplete list of recent works on the robust GEE
method include [4,6,9,18,19] and so on.

As far as we know, a better estimate for the covariance matrix will result in a better estimate for the mean parameter. But
all methods above mainly payed attention to the estimate of mean parameters while regarded the covariance parameters as
nuisance parameters. In fact, the covariance parameters may be not nuisance parameters and have substantive significance
for its own interest, see Carroll [1] and Zhang and Li [29] for reference. Recently, motivated by the modified Cholesky decom-
position, Ye and Pan [28] proposed joint mean and covariance regression models by using generalized estimating equations.
The advantages of this decomposition are that it makes covariance matrices to be positive definite and the parameters in it
have well-founded statistical concepts. Due to these advantages, Cholesky decomposition has received considerable
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attention in the literature. Here we only list a few. See Leng et al. [10] and Mao et al. [13] constructed PLMs for the mean and
the covariance structure for longitudinal data, which are more flexible than that of Ye and Pan [28]. However, the above
approaches based on GEEs are also highly sensitive to outliers in the sample. Recently, Zheng et al. [31] established three
robust estimating equations to hinder the effect of outliers in both mean and covariance estimation by borrowing the idea
of [6]. However, as far as we know, there is little discussion on robust estimation on the semiparametric mean-covariance
model (SMCM). In this paper, we consider the SMCM and decompose the inverse of covariance matrix by the modified Chole-
sky decomposition. The entries in this decomposition are autoregressive parameters and log innovation variances. See
[10,28,31,32] for references. Zhang and Leng [30] proposed a new regression model to decompose covariance structures
by using a novel Cholesky factor with the entries being a moving average and log innovation variances. These decomposi-
tions are based on linear time series analysis. Thus, the application of semiparametric mean-covariance regression with lon-
gitudinal data may be extended to the realm of nonlinear time series analysis, since the derivation of methods for nonlinear
time series analysis acts as one of the crowning achievements that emerged from the theory of deterministic dynamical sys-
tems. Kodba et al. [8] and Perc [15] applied nonlinear time series analysis methods to analyse the chaotic behaviour of a very
simple periodically driven resistor–inductor diode circuit and dynamics of human gait respectively and pointed out that the
nonlinear time series analysis methods are superior to mathematical modelling, because of they can introduce basic con-
cepts directly from the experimental data.

In recent years, many penalization or shrinkage based variable selection methods have been developed to select signif-
icant variables among all the candidate variables, e.g., [3,33–35], etc. All the methods mentioned above only consider the
independent data. But variable selection is also a fundamentally important issue in longitudinal studies, which could greatly
enhance the prediction performance of the fitted model and select significant variables. In recent years, penalty function had
been adopted to select active variables in the longitudinal data analysis. For example, Fan et al. [4] developed penalized
robust estimating equations for longitudinal linear regression models with the SCAD penalty. Wang et al. [23] considered
the SCAD-penalized GEE for analyzing longitudinal data with high-dimensional covariates. Zheng et al. [32] considered
robust variable selection method in joint mean and covariance models through using three penalized robust generalized
estimating equations with three SCAD penalties. All these procedures are based on penalty functions to select variables,
which are singular at zero. Consequently, these variable selection procedures need to solve the convex optimization which
lead to a computational burden. Borrowing the idea of Ueki [22], Li et al. [11] developed the smooth-threshold generalized
estimating equations (SGEEs) for longitudinal generalized linear models which can efficiently avoid the convex optimization
problem. These facts motivate us to develop robust smooth-threshold generalized estimating equations for the SMCM with
longitudinal data. This paper has made the following contributions: (i) we establish consistency and asymptotic normality of
the mean regression coefficients, generalized autoregressive coefficients and innovation variances, and obtain the optimal
convergent rate for estimating the nonparametric functions. (ii) The proposed method can alleviate the effect of outliers
in either the response or/and the covariate domain by using the bounded Huber’s score function and Mallows weights.
(iii) The proposed method can automatically eliminate inactive predictors by setting the corresponding parameters to be
zero and estimate nonzero coefficients through semiparametric smooth-threshold generalized estimating equations.

The rest of the article is organized as follows. Section 2 introduces the model and estimation method. Theoretical prop-
erties of the proposed estimators are also given in this Section. Section 3 describes the semiparametric smooth-threshold
generalized estimating equations and oracle property. In Section 4, an efficient algorithm is proposed to implement the pro-
cedures. Moreover, we discuss how to select the tuning parameters so that the corresponding estimators are robust and
sparse. Simulation studies are carried out in Section 5 to investigate the performance of the proposed estimators under
two types of contaminations. Some concluding remarks are given in Section 6. All the proofs are relegated to the Appendix.

2. Robust generalized estimating equations in joint mean and covariance semiparametric models

2.1. The joint mean and covariance semiparametric models

For a vector or a matrix A, we define A as random vector or matrix of population, Ai as the ith corresponding sample and
A0i as the true value of Ai throughout our paper. In this paper, we consider an experiment with m subjects and ni observations

over time for the ith subject, where n ¼
Pm

i¼1ni is the total of observations. Suppose that yi ¼ yi1; . . . ; yini

� �T
is the response for

the ith subject ði ¼ 1; . . . ;mÞ at time points ti ¼ ðti1; . . . ; tini
Þ. We assume that tij is the time or any time-dependent covariate

and ftijg 2 ½0;1�. We further specify a marginal model through defining the first two moments of the response yij, i.e.,
Eðyij xij

�� ; tijÞ ¼ l0ij;Vðyi xij ; tiÞ ¼ R0i, where xij is a p-dimension covariate vector and xi ¼ ðxi1; . . . ; xini
ÞT is a corresponding covar-

iate matrix for the ith subject. On account of the modified Cholesky decomposition, there exists a lower triangle matrix U
with 1’s on the main diagonal satisfying UiR0iU

T
i ¼ D0i, where D0i is a diagonal matrix with positive entries and the

lower-diagonal entries of Ui are defined as the negatives of the autoregressive coefficients /ijk of

yij � lij ¼
Xj�1

k¼1

/ijkðyik � likÞ þ eij: ð1Þ

The diagonal entries of D0i are taken as the innovation variances with entries r2
0ij ¼ varðeijÞ, where eij ¼ yij � ŷij. The modified

Cholesky decomposition makes R0i to be positive definite, and the parameters / and logðr2
ijÞ to be unconstrained. Based on
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