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a b s t r a c t

In this paper we study the nonlinear dynamics of a modified van der Pol oscillator. More
precisely, we study the local codimension one, two and three bifurcations which occur
in the four parameter family of differential equations that models an extension of the clas-
sical van der Pol circuit with cubic nonlinearity. Aiming to contribute to the understand of
the complex dynamics of this system we present analytical and numerical studies of its
local bifurcations and give the corresponding bifurcation diagrams. A complete description
of the regions in the parameter space for which multiple small periodic solutions arise
through the Hopf bifurcations at the equilibria is given.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main results

In this paper we study the local codimension one, two and three bifurcations and the respective qualitative changes in the
dynamics of the following system of nonlinear equations

_x ¼ dx
ds ¼ �m gðxÞ þ x�z

R þ y
� �

;

_y ¼ dy
ds ¼ x� a;

_z ¼ dz
ds ¼ x�z

R ;

8><
>: ð1Þ

where gðxÞ ¼ aðx3=3� xÞ; ðx; y; zÞ 2 R3 are the state variables and the real parameters m;a;R and a belong to the set

T ¼ ðm;a;R; aÞ 2 R4 : m > 0;a > 0;R > 0; a P 0
� �

: ð2Þ

As far as we know, system (1) was proposed and firstly studied in [2], and it can be obtained from the system

C0x0 ¼ � f ðxÞ þ x�z
R þ y

� �
;

Ly0 ¼ x� a;

Cz0 ¼ x�z
R ;

8><
>: ð3Þ

where f ðxÞ ¼ �a1xþ a3x3; a1 > 0; a3 > 0, by the following changes in variables, parameters and rescaling in time

x ¼ V0�x; y ¼ V0

xL
�y; z ¼ V0�z; s ¼ xt; x ¼ 1ffiffiffiffiffiffi

LC
p ; V0 ¼

ffiffiffiffiffiffiffiffi
a1

3a3

r
;
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m ¼ C
C0
; �a ¼ a

V0
; a ¼ a1

xC
; R ¼ RxC

and then dropping the bars. The prime denotes derivatives with respect to the independent variable t. In Eqs. (3) x and z are
the voltage models across the capacitors with capacitances C0 and C, respectively and y is the current model through the
inductor with inductance L. See Fig. 1. In this figure, f ðxÞ represents the nonlinear characteristic of a negative conductance,
R is the resistance of the resistor and a is a battery voltage model. See [2] for more details. See also [1] for a study in a similar
electronic circuit.

Despite the simplicity of the electronic circuit scheme shown in Fig. 1, the related system (1) has a rich dynamical behav-
ior such that canard orbits according to [2]. System (1) has only one equilibrium point Ea ¼ ða; gðaÞ; aÞ, which exists for any
parameter values in T .

In this paper by using the projection method which allows us the calculation of the Lyapunov coefficients associated to
the Hopf bifurcations we study all the possible bifurcations (generic and degenerate ones) which occur at the equilibrium Ea

of system (1). In this way the analyzes presented in [2] are extended and completed here. Hopf bifurcations give the simplest
way in which the solutions of (1) present a periodic oscillatory regime with the birth of one or more limit cycles. More pre-
cisely, we prove the following statements:

(a) For the equilibrium E0 ¼ ð0;0;0Þ, that is a ¼ 0 (no battery) in system (1), the Hopf surfaceH1 is obtained in the space of
parameters ðm;a;R;0Þ 2 T and the first Lyapunov coefficient l1 is calculated. It is established that this coefficient is
always negative on the surface H1.

(b) For the equilibrium Ea;0 < a < 1, the Hopf hypersurface H2 is obtained in the space of parameters T , the first Lyapu-
nov coefficient l1 is calculated and it is shown that this coefficient vanishes on a 2-dimensional surface contained in
H2, giving rise to codimension two bifurcations. The second Lyapunov coefficient l2 is calculated and it is established
that this coefficient also vanishes on a 2-dimensional surface contained in H2, giving rise to codimension three bifur-
cations along a curve C given by the intersection of the surfaces fl1 ¼ 0g and fl2 ¼ 0g. The third Lyapunov coefficients
are obtained for points on the curve C. It is proved that the third Lyapunov coefficient is always negative on C.

From statement (a) it follows that the maximum number of small periodic orbits bifurcating from the equilibrium E0 is one.
See the corresponding bifurcation diagram in Fig. 2. Furthermore, from statement (b) we can deduce that there is a region in
the parameter space for which one repelling periodic orbit and two attracting periodic orbits coexist with the repelling equi-
librium point Ea, for 0 < a < 1. See the bifurcation diagrams in Figs. 3,4, 6–9.

The article is organized as follows. In Section 2 through a linear analysis of system (1) we obtain the Hopf surface for E0

and the Hopf hypersurface for Ea;0 < a < 1. In Section 3 following [3,5,6] we present a brief review of the methods used to
study codimension one, two and three Hopf bifurcations, describing in particular how to calculate the Lyapunov coefficients
related to the stability of the equilibrium point as well as of the periodic orbits which appear in these bifurcations. In general
the Lyapunov coefficients are very difficult to be obtained analytically. These methods are used in Section 4 to prove the
main results of this paper, described in statements (a) and (b) above. Finally, in Section 5 we make some concluding remarks.

2. Linear analysis of system (1)

In this section we study some generalities and linear stability of system (1). In a vectorial notation which will be useful in
the calculations, system (1) can be written as x0 ¼ f ðx; fÞ, where

f ðx; fÞ ¼ �m a
x3

3
� x

� �
þ x� z

R
þ y

� �
; x� a;

x� z
R

� �
; ð4Þ

x ¼ ðx; y; zÞ 2 R3 and f ¼ ðm;a;R; aÞ 2 T .

Fig. 1. Circuit scheme.
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