Two generalizations of Lucas sequence

Göksal Bilgici
Department of Computer Education and Instructional Technology, Education Faculty, Kastamonu University, Kastamonu, Turkey

ARTICLE INFO

Keywords:

Generalized Lucas sequence
Generalized Fibonacci sequence
Generating function
Binet formula

Abstract

We define a generalization of Lucas sequence by the recurrence relation $l_{m}=b l_{m-1}+l_{m-2}$ (if m is even) or $l_{m}=a l_{m-1}+l_{m-2}$ (if m is odd) with initial conditions $l_{0}=2$ and $l_{1}=a$. We obtain some properties of the sequence $\left\{l_{m}\right\}_{m=0}^{\infty}$ and give some relations between this sequence and the generalized Fibonacci sequence $\left\{q_{m}\right\}_{m=0}^{\infty}$ which is defined in Edson and Yayenie (2009). Also, we give corresponding generalized Lucas sequence with the generalized Fibonacci sequence given in Yayenie (2011).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Fibonacci sequence $\left\{F_{m}\right\}_{m=0}^{\infty}$ is the most famous sequence among integer sequences which is defined recursively by the relation $F_{m}=F_{m-1}+F_{m-2}$ with initial conditions $F_{0}=0$ and $F_{1}=1$. The Fibonacci numbers appear in many interesting places (see [2] for details). Another well-known sequence is the Lucas sequence $\left\{L_{m}\right\}_{m=0}^{\infty}$ which satisfies the same recurrence relation with the initial conditions $L_{0}=2$ and $L_{1}=1$.

The generating function for Fibonacci and Lucas sequences are, respectively,

$$
\sum_{n=0}^{\infty} F_{m} x^{m}=\frac{x}{1-x-x^{2}} \quad \text { and } \quad \sum_{n=0}^{\infty} L_{m} x^{m}=\frac{2-x}{1-x-x^{2}}
$$

and the Binet's formula for Fibonacci and Lucas sequences are, respectively,

$$
F_{m}=\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta} \quad \text { and } \quad L_{m}=\alpha^{m}+\beta^{m}
$$

where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$ are roots of the characteristic equation $x^{2}-x-1=0$. The positive root α is known as "golden ratio".

There are many generalizations of the Fibonacci sequence. One of them was given by Edson and Yayenie in [1] as follows;

$$
q_{0}=0, \quad q_{1}=1, \quad q_{m}=\left\{\begin{array}{ll}
a q_{m-1}+q_{m-2}, & \text { if } \mathrm{m} \text { is even } \tag{1}\\
b q_{m-1}+q_{m-2}, & \text { if } \mathrm{m} \text { is odd }
\end{array} \quad(m \geqslant 2)\right.
$$

where a and b are two nonzero real numbers. They gave the generating function and some identities for the sequence $\left\{q_{m}\right\}_{m=0}^{\infty}$. Also they obtained the following extended Binet formula

[^0]\[

$$
\begin{equation*}
q_{m}=\left(\frac{a^{\xi(m+1)}}{(a b)^{\left[\frac{m}{2}\right\rfloor}}\right) \frac{\alpha^{m}-\beta^{m}}{\alpha-\beta} \tag{2}
\end{equation*}
$$

\]

where $\alpha=\frac{a b+\sqrt{a^{2} b^{2}+4 a b}}{2}$ and $\beta=\frac{a b-\sqrt{a^{2} b^{2}+4 a b}}{2}$ are the roots of the characteristic equation $x^{2}-a b x-a b=0$ and $\xi(n)=n-2\left\lfloor\frac{n}{2}\right\rfloor$ is the parity function. Later, in [6], other relationships for the sequence $\left\{q_{m}\right\}_{m=0}^{\infty}$ were given. Some conditional sequences related to the sequence $\left\{q_{m}\right\}_{m=0}^{\infty}$ and their properties can be found in [1,3,4,6].

2. Generalized Lucas sequence

In this section, we define a generalization of the Lucas sequence similar to the generalized Fibonacci sequence $\left\{q_{m}\right\}_{m=0}^{\infty}$. We also give generating function and Binet's formula for this generalized sequence.

Definition 1. For any real nonzero numbers a and b, the generalized Lucas sequences $\left\{l_{m}\right\}_{m=0}^{\infty}$ is defined recursively by

$$
l_{0}=2, \quad l_{1}=a, \quad l_{m}=\left\{\begin{array}{ll}
b l_{m-1}+l_{m-2}, & \text { if } \mathrm{m} \text { is even } \\
a l_{m-1}+l_{m-2}, & \text { if } \mathrm{m} \text { is odd }
\end{array} \quad(m \geqslant 2)\right.
$$

If we take $a=b=1$, we have the classical Lucas sequence.
With the help of Lemma 3.1 in [5], we have the following identities.
Lemma 1. The sequence $\left\{l_{m}\right\}_{m=0}^{\infty}$ satisfies the following properties

$$
\begin{aligned}
& l_{2 n}=(a b+2) l_{2 n-2}-l_{2 n-4} \\
& l_{2 n+1}=(a b+2) l_{2 n-1}-l_{2 n-3}
\end{aligned}
$$

Theorem 1. The generating function of the sequence $\left\{l_{m}\right\}_{m=0}^{\infty}$ is

$$
L(x)=\frac{2+a x-(a b+2) x^{2}+a x^{3}}{1-(a b+2) x^{2}+x^{4}}
$$

Proof. We define

$$
L_{0}(x)=\sum_{m=0}^{\infty} l_{2 m} x^{2 m} \quad \text { and } \quad L_{1}(x)=\sum_{m=0}^{\infty} l_{2 m+1} x^{2 m+1}
$$

Note that

$$
\begin{aligned}
& L_{0}(x)=2+(a b+2) x^{2}+\sum_{m=2}^{\infty} l_{2 m} x^{2 m} \\
& (a b+2) x^{2} L_{0}(x)=2(a b+2) x^{2}+\sum_{m=2}^{\infty}(a b+2) l_{2 m-2} x^{2 m}
\end{aligned}
$$

and

$$
x^{4} L_{0}(x)=\sum_{m=2}^{\infty} l_{2 m-4} x^{2 m}
$$

From the first equation in Lemma 1, we have

$$
\left[1-(a b+2) x^{2}+x^{4}\right] L_{0}(x)=2-(a b+2) x^{2}
$$

and we get

$$
L_{0}(x)=\frac{2-(a b+2) x^{2}}{1-(a b+2) x^{2}+x^{4}}
$$

Similarly, we find

$$
L_{1}(x)=\frac{a+a x^{3}}{1-(a b+2) x^{2}+x^{4}}
$$

Since $L(x)=L_{0}(x)+L_{1}(x)$, we obtain the desired result.
The following theorem gives Binet's formula for generalized Lucas sequence $\left\{l_{m}\right\}_{m=0}^{\infty}$.

https://daneshyari.com/en/article/4627372

Download Persian Version:
https://daneshyari.com/article/4627372

Daneshyari.com

[^0]: E-mail address: gbilgici@kastamonu.edu.tr
 http://dx.doi.org/10.1016/j.amc.2014.07.111
 0096-3003/© 2014 Elsevier Inc. All rights reserved.

