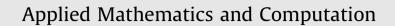
Contents lists available at ScienceDirect



journal homepage: www.elsevier.com/locate/amc

Ostrowski type inequalities for functions whose higher order derivatives have a single point of non-differentiability

Iva Franjić^{a,*}, Josip Pečarić^b, Sanja Tipurić-Spužević^c

^a Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

^b Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia

^c Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina

ARTICLE INFO

Keywords: Ostrowski type inequalities Higher order derivatives Single point of non-differentiability

ABSTRACT

Ostrowski type inequalities for the class of functions whose (n - 1)th order derivatives are continuous, of bounded variation and have a single point of non-differentiability are derived. Special attention is given to functions whose first derivative has a single point of non-differentiability. Improvements of some previously obtained results are provided. © 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Ostrowski inequality (cf. [10]) states: if $f : [a, b] \to \mathbb{R}$ is a differentiable function with a bounded derivative, then

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)dt - f(x)\right| \leqslant \left[\frac{b-a}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{b-a}\right] \|f'\|_{\infty}, \quad x \in [a,b].$$

$$\tag{1}$$

This inequality has been studied extensively during the years and many generalizations and refinements have been obtained. For some recent results, see for example [3,6,9,12] and the references therein.

The main objective of this paper is to give an Ostrowski type inequality for the following class of functions.

Definition 1. Let $x_0 \in [a, b] \subset \mathbb{R}$. A function $f : [a, b] \to \mathbb{R}$ is said to belong to the class $\mathcal{D}(x_0)$, that is, $f \in \mathcal{D}(x_0)$, if f is continuous on [a, b], differentiable on $(a, x_0) \cup (x_0, b)$ and such that

 $M_L = \sup_{x \in (a,x_0)} |f'(x)| < +\infty$ and $M_R = \sup_{x \in (x_0,b)} |f'(x)| < +\infty$.

In the case $x_0 = a$ (resp. $x_0 = b$), we set $M_L = 0$ (resp. $M_R = 0$).

This class of functions has been introduced in [11]. As a motivation, the following class of functions was mentioned: the class of continuously differentiable functions on [a, b] which are monotonous and convex or concave on $[a, x_0]$ and on $[x_0, b]$. For example, one can consider an increasing convex–concave function f with an inflexion point x_0 . In the same paper, the following theorem was proved.

Theorem 1. Let $f : I \to \mathbb{R}$, where $I \subset \mathbb{R}$ is an interval, be a function differentiable on IntI, and let $[a, b] \subset \text{IntI}$. Suppose that $f' \in \mathcal{D}(x_0)$ for some $x_0 \in [a, b]$. Then, for $x \in [a, b]$, we have the following inequality

* Corresponding author.

http://dx.doi.org/10.1016/j.amc.2014.08.019 0096-3003/© 2014 Elsevier Inc. All rights reserved.

E-mail addresses: ifranjic@pbf.hr (I. Franjić), pecaric@hazu.hr (J. Pečarić), sanja.spuzevic@tel.net.ba (S. Tipurić-Spužević).

$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)dt - f(x) + \left(x - \frac{a+b}{2}\right)\frac{f(b) - f(a)}{b-a}\right| \leqslant S(p),\tag{2}$$

where

$$S(p) = \begin{cases} \frac{b-a}{2(p+1)^{1/p}(q+1)^{1/q}} \left(M_L^p \frac{(x_0-a)^{p+1}}{b-a} + M_R^p \frac{(b-x_0)^{p+1}}{b-a} \right)^{1/p}, & \text{if } 1$$

and (p,q) is a pair of conjugate exponents, that is, 1/p + 1/q = 1.

Note that $\lim_{p\to 1} S(p) = S(1)$, $\lim_{p\to\infty} S(p) = S(\infty)$ and also $S(p) \leq S(\infty)$ for $1 \leq p < \infty$ (cf. [11]). The aim of this paper is foremost to give an improvement of Theorem 1 for the case p = 1. Furthermore, we will also consider a more general case – the case when it is assumed that $f^{(n-1)} \in \mathcal{D}(x_0)$ for some $n \ge 1$. Similar results can be found in [2,7]. The proofs of our results rely heavily on the extended Euler formula, derived in [4].

Theorem 2. Let $f : [a,b] \to \mathbb{R}$ be such that $f^{(n-1)}$ is continuous and of bounded variation on [a,b] for some $n \ge 1$. Then, for every $x \in [a,b]$, we have

$$\frac{1}{b-a} \int_{a}^{b} f(t)dt - f(x) + \sum_{k=1}^{n-1} \frac{(b-a)^{k-1}}{k!} B_{k} \left(\frac{x-a}{b-a}\right) \left[f^{(k-1)}(b) - f^{(k-1)}(a) \right] \\
= \frac{(b-a)^{n-1}}{n!} \int_{a}^{b} \left[B_{n}^{*} \left(\frac{x-t}{b-a}\right) - B_{n} \left(\frac{x-a}{b-a}\right) \right] df^{(n-1)}(t),$$
(3)

where $B_k(t)$ is the kth Bernoulli polynomial and $B_k^*(t) = B_k(t - \lfloor t \rfloor), t \in \mathbb{R}$.

Since Bernoulli polynomials play an important role here, let us recall some of their basic properties. They are uniquely determined by

$$B'_k(x) = kB_{k-1}(x), \quad B_k(x+1) - B_k(x) = kx^{k-1}, \quad k \ge 0, \ B_0(x) = 1.$$

For the *k*th Bernoulli polynomial we have $B_k(1 - x) = (-1)^k B_k(x)$, $x \in [0, 1]$, $k \ge 1$. The first three Bernoulli polynomials are $B_1(x) = x - 1/2$, $B_2(x) = x^2 - x + 1/6$ and $B_3(x) = x^3 - 3x^2/2 + x/2$.

 $B_k^*(x)$ are periodic functions of period 1 such that $B_k^*(t) = B_k(t - \lfloor t \rfloor)$, $t \in \mathbb{R}$. For $k \ge 2$, $B_k^*(x)$ are continuous, while $B_1^*(x)$ is a discontinuous function with a jump of -1 at each integer.

The *k*th Bernoulli number B_k is defined by $B_k = B_k(0)$. For $k \ge 2$, we have $B_k(1) = B_k(0) = B_k$. Note that $B_{2k-1} = 0$ for $k \ge 2$, while $B_1(0) = -B_1(1) = -1/2$. For further details on Bernoulli polynomials see [1,8].

In what follows, $||f||_p^{[a,b]}$ stands for the L^p norm

$$\|f\|_p^{[a,b]}= egin{cases} \left(\int_a^b |f(t)|^p dt
ight)^{1/p}, & 1\leqslant p<\infty\ \mathrm{ess}\, \sup_{t\in[a,b]}|f(t)|, & p=\infty. \end{cases}$$

2. Main results

Theorem 3. Let $f : [a,b] \to \mathbb{R}$ be such that $f^{(n-1)}$ is of bounded variation on [a,b] and $f^{(n-1)} \in \mathcal{D}(x_0)$ for some $x_0 \in [a,b]$ and $n \ge 1$. Then, for $x \in [a,b]$, we have

$$\begin{aligned} \left| \frac{1}{b-a} \int_{a}^{b} f(t) dt - f(x) + \sum_{k=1}^{n-1} \frac{(b-a)^{k-1}}{k!} B_{k} \left(\frac{x-a}{b-a} \right) \left[f^{(k-1)}(b) - f^{(k-1)}(a) \right] \right| \\ & \leq \begin{cases} \frac{(b-a)^{n-1}}{n!} \left(M_{L}^{p}(x_{0}-a) + M_{R}^{p}(b-x_{0}) \right)^{1/p} \|K_{n}(x,\cdot)\|_{q}^{[a,b]}, & 1 \leq p < \infty, \end{cases}$$

$$(4)$$

$$\begin{cases} \frac{(b-a)^{n-1}}{n!} \max\{M_{L}, M_{R}\} \|K_{n}(x,\cdot)\|_{1}^{[a,b]}, & p = \infty, \end{cases}$$

where (p,q) is a pair of conjugate exponents, that is, 1/p + 1/q = 1, and

$$K_n(x,t) = B_n^* \left(\frac{x-t}{b-a}\right) - B_n \left(\frac{x-a}{b-a}\right).$$
⁽⁵⁾

Proof. Starting from the right-hand side of (3) and applying the triangle inequality, the integral Hölder inequality and the discrete Hölder inequality, respectively, for $1 \le p, q < \infty$, gives:

558

Download English Version:

https://daneshyari.com/en/article/4627375

Download Persian Version:

https://daneshyari.com/article/4627375

Daneshyari.com