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a b s t r a c t

Ostrowski type inequalities for the class of functions whose ðn� 1Þth order derivatives are
continuous, of bounded variation and have a single point of non-differentiability are
derived. Special attention is given to functions whose first derivative has a single point
of non-differentiability. Improvements of some previously obtained results are provided.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Ostrowski inequality (cf. [10]) states: if f : ½a; b� ! R is a differentiable function with a bounded derivative, then
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This inequality has been studied extensively during the years and many generalizations and refinements have been
obtained. For some recent results, see for example [3,6,9,12] and the references therein.

The main objective of this paper is to give an Ostrowski type inequality for the following class of functions.

Definition 1. Let x0 2 ½a; b� � R. A function f : ½a; b� ! R is said to belong to the class Dðx0Þ, that is, f 2 Dðx0Þ, if f is continuous
on ½a; b�, differentiable on ða; x0Þ [ ðx0; bÞ and such that

ML ¼ sup
x2ða;x0Þ

jf 0ðxÞj < þ1 and MR ¼ sup
x2ðx0 ;bÞ

jf 0ðxÞj < þ1:

In the case x0 ¼ a (resp. x0 ¼ b), we set ML ¼ 0 (resp. MR ¼ 0).
This class of functions has been introduced in [11]. As a motivation, the following class of functions was mentioned: the

class of continuously differentiable functions on ½a; b� which are monotonous and convex or concave on ½a; x0� and on ½x0; b�.
For example, one can consider an increasing convex–concave function f with an inflexion point x0. In the same paper, the
following theorem was proved.

Theorem 1. Let f : I! R, where I � R is an interval, be a function differentiable on IntI, and let ½a; b� � IntI. Suppose that
f 0 2 Dðx0Þ for some x0 2 ½a; b�. Then, for x 2 ½a; b�, we have the following inequality

http://dx.doi.org/10.1016/j.amc.2014.08.019
0096-3003/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
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and ðp; qÞ is a pair of conjugate exponents, that is, 1=pþ 1=q ¼ 1.
Note that limp!1SðpÞ ¼ Sð1Þ; limp!1SðpÞ ¼ Sð1Þ and also SðpÞ 6 Sð1Þ for 1 6 p <1 (cf. [11]). The aim of this paper is

foremost to give an improvement of Theorem 1 for the case p ¼ 1. Furthermore, we will also consider a more general case
– the case when it is assumed that f ðn�1Þ 2 Dðx0Þ for some n P 1. Similar results can be found in [2,7]. The proofs of our
results rely heavily on the extended Euler formula, derived in [4].

Theorem 2. Let f : ½a; b� ! R be such that f ðn�1Þ is continuous and of bounded variation on ½a; b� for some n P 1. Then, for every
x 2 ½a; b�, we have
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where BkðtÞ is the kth Bernoulli polynomial and B�kðtÞ ¼ Bkðt � btcÞ; t 2 R.
Since Bernoulli polynomials play an important role here, let us recall some of their basic properties. They are uniquely

determined by

B0kðxÞ ¼ kBk�1ðxÞ; Bkðxþ 1Þ � BkðxÞ ¼ kxk�1
; k P 0; B0ðxÞ ¼ 1:

For the kth Bernoulli polynomial we have Bkð1� xÞ ¼ ð�1ÞkBkðxÞ; x 2 ½0;1�; k P 1. The first three Bernoulli polynomials are
B1ðxÞ ¼ x� 1=2; B2ðxÞ ¼ x2 � xþ 1=6 and B3ðxÞ ¼ x3 � 3x2=2þ x=2.

B�kðxÞ are periodic functions of period 1 such that B�kðtÞ ¼ Bkðt � btcÞ; t 2 R. For k P 2; B�kðxÞ are continuous, while B�1ðxÞ is a
discontinuous function with a jump of �1 at each integer.

The kth Bernoulli number Bk is defined by Bk ¼ Bkð0Þ. For k P 2, we have Bkð1Þ ¼ Bkð0Þ ¼ Bk. Note that B2k�1 ¼ 0 for k P 2,
while B1ð0Þ ¼ �B1ð1Þ ¼ �1=2. For further details on Bernoulli polynomials see [1,8].

In what follows, kfk½a;b�p stands for the Lp norm

kfk½a;b�p ¼
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2. Main results

Theorem 3. Let f : ½a; b� ! R be such that f ðn�1Þ is of bounded variation on ½a; b� and f ðn�1Þ 2 Dðx0Þ for some x0 2 ½a; b� and n P 1.
Then, for x 2 ½a; b�, we have
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where ðp; qÞ is a pair of conjugate exponents, that is, 1=pþ 1=q ¼ 1, and
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Proof. Starting from the right-hand side of (3) and applying the triangle inequality, the integral Hölder inequality and the
discrete Hölder inequality, respectively, for 1 6 p; q <1, gives:

558 I. Franjić et al. / Applied Mathematics and Computation 245 (2014) 557–565



Download English Version:

https://daneshyari.com/en/article/4627375

Download Persian Version:

https://daneshyari.com/article/4627375

Daneshyari.com

https://daneshyari.com/en/article/4627375
https://daneshyari.com/article/4627375
https://daneshyari.com

